{"title":"序列与级数","authors":"Ronda Sanders, X. Wu","doi":"10.1142/9789814730402_0006","DOIUrl":null,"url":null,"abstract":"Command/Example Description seq(f(n), n=i..j); Examples: seq(1/n,n=1..10); a:=seq(k!,k=3..10); a[3]; a[8]; seq(b[m]=sin(m*Pi/2),m=0..8); pt:=seq([n,f(n)],n=1..8); pt[2]; It creates a finite sequence of values f(i), f(i+1), · · ·, and f(j), where f(n) is a maple function and i ≤ j are integers. A sequence of points on the graph of y = f(x) can be obtained using: > seq([n,f(n)], n=i..j); sum(f(n), n=i..j) Examples: sum(n^2, n=-1..10); sum((1/2)^n,n=0..infinity); sum(c/k^2,k=1..infinity); S:=n->sum(k,k=1..n); S(n); S(8); f:=x->sum(x^n/n!,n=0..infinity); f(x); f(1); f(-1); It creates and evaluates a finite or infinite sum, that is, series ∑j n=i f(n), where f(n) is a maple function or expression and i ≤ j can be integers, variables, or infinity. For a finite or convergent infinite series, it automatically evaluates the sum and returns a value or formula. If you don’t want the automatic evaluation, use Sum instead of sum. for n from i to j do...end do; Examples: for n from 5 to 10 do c[n]:=1/n end do; for n from 0 to 9 do d[2*n]:=1; d[2*n+1]:=0 end do; s[1]:=1; for n from 2 to 8 do s[n]:= s[n-1]+n end do; A typical for-loop (for and do statement) used in general programming languages. It executes whatever between ‘‘do’’ and ‘‘end do’’ repeatedly for a counted number of times (‘‘for n from i to j’’). It hence can be used to work with sequences in much more general ways than what the command seq could. • A link to the SequenceDrill maplet can be found on the course website:","PeriodicalId":118589,"journal":{"name":"Teaching and Learning Algebra","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Sequences and Series\",\"authors\":\"Ronda Sanders, X. Wu\",\"doi\":\"10.1142/9789814730402_0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Command/Example Description seq(f(n), n=i..j); Examples: seq(1/n,n=1..10); a:=seq(k!,k=3..10); a[3]; a[8]; seq(b[m]=sin(m*Pi/2),m=0..8); pt:=seq([n,f(n)],n=1..8); pt[2]; It creates a finite sequence of values f(i), f(i+1), · · ·, and f(j), where f(n) is a maple function and i ≤ j are integers. A sequence of points on the graph of y = f(x) can be obtained using: > seq([n,f(n)], n=i..j); sum(f(n), n=i..j) Examples: sum(n^2, n=-1..10); sum((1/2)^n,n=0..infinity); sum(c/k^2,k=1..infinity); S:=n->sum(k,k=1..n); S(n); S(8); f:=x->sum(x^n/n!,n=0..infinity); f(x); f(1); f(-1); It creates and evaluates a finite or infinite sum, that is, series ∑j n=i f(n), where f(n) is a maple function or expression and i ≤ j can be integers, variables, or infinity. For a finite or convergent infinite series, it automatically evaluates the sum and returns a value or formula. If you don’t want the automatic evaluation, use Sum instead of sum. for n from i to j do...end do; Examples: for n from 5 to 10 do c[n]:=1/n end do; for n from 0 to 9 do d[2*n]:=1; d[2*n+1]:=0 end do; s[1]:=1; for n from 2 to 8 do s[n]:= s[n-1]+n end do; A typical for-loop (for and do statement) used in general programming languages. It executes whatever between ‘‘do’’ and ‘‘end do’’ repeatedly for a counted number of times (‘‘for n from i to j’’). It hence can be used to work with sequences in much more general ways than what the command seq could. • A link to the SequenceDrill maplet can be found on the course website:\",\"PeriodicalId\":118589,\"journal\":{\"name\":\"Teaching and Learning Algebra\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teaching and Learning Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789814730402_0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teaching and Learning Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789814730402_0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
摘要
命令/示例说明seq(f(n), n=i..j);例子:seq (1 / n, n = 1 . . 10);答:= seq (k !, k = 3 . . 10);[3];[8];seq (b [m] =罪(m *π/ 2),m = 0 . . 8);pt: = seq (n、f (n), n = 1 . . 8);pt [2];它创建一个有限序列的值f(i), f(i+1),···和f(j),其中f(n)是一个枫函数,i≤j是整数。y = f(x)图上的点序列可以用:> seq([n,f(n)], n=i..j);sum(f(n), n=i..j)示例:sum(n²,n=-1..10);总和((1/2)^ n, n = 0 . .∞);总和(c / k ^ 2 k = 1 . .∞);S: = n - >总和(k, k = 1 . . n);S (n);(8);f: = x - >总和(x ^ n / n, n = 0 . .∞);f (x);f (1);f (1);它创建并计算一个有限或无限和,即级数∑j n=i f(n),其中f(n)是一个枫函数或表达式,i≤j可以是整数、变量或无穷大。对于有限的或收敛的无穷级数,它自动求和并返回一个值或公式。如果不希望自动求值,请使用Sum而不是Sum。对于n从I到j做…结束;示例:for n从5到10 do c[n]:=1/n end do;对于n从0到9,do d[2*n]:=1;D [2*n+1]:=0;[1]: = 1;对于n从2到8,do s[n]:= s[n-1]+n end do;一般编程语言中使用的典型for循环(for和do语句)。它重复执行“do”和“end do”之间的任何内容,并计算次数(“for n from i to j”)。因此,它可以用比命令seq更通用的方式来处理序列。•在课程网站上可以找到SequenceDrill市场的链接:
Command/Example Description seq(f(n), n=i..j); Examples: seq(1/n,n=1..10); a:=seq(k!,k=3..10); a[3]; a[8]; seq(b[m]=sin(m*Pi/2),m=0..8); pt:=seq([n,f(n)],n=1..8); pt[2]; It creates a finite sequence of values f(i), f(i+1), · · ·, and f(j), where f(n) is a maple function and i ≤ j are integers. A sequence of points on the graph of y = f(x) can be obtained using: > seq([n,f(n)], n=i..j); sum(f(n), n=i..j) Examples: sum(n^2, n=-1..10); sum((1/2)^n,n=0..infinity); sum(c/k^2,k=1..infinity); S:=n->sum(k,k=1..n); S(n); S(8); f:=x->sum(x^n/n!,n=0..infinity); f(x); f(1); f(-1); It creates and evaluates a finite or infinite sum, that is, series ∑j n=i f(n), where f(n) is a maple function or expression and i ≤ j can be integers, variables, or infinity. For a finite or convergent infinite series, it automatically evaluates the sum and returns a value or formula. If you don’t want the automatic evaluation, use Sum instead of sum. for n from i to j do...end do; Examples: for n from 5 to 10 do c[n]:=1/n end do; for n from 0 to 9 do d[2*n]:=1; d[2*n+1]:=0 end do; s[1]:=1; for n from 2 to 8 do s[n]:= s[n-1]+n end do; A typical for-loop (for and do statement) used in general programming languages. It executes whatever between ‘‘do’’ and ‘‘end do’’ repeatedly for a counted number of times (‘‘for n from i to j’’). It hence can be used to work with sequences in much more general ways than what the command seq could. • A link to the SequenceDrill maplet can be found on the course website: