深度神经网络的故障注入攻击

Yannan Liu, Lingxiao Wei, Bo Luo, Q. Xu
{"title":"深度神经网络的故障注入攻击","authors":"Yannan Liu, Lingxiao Wei, Bo Luo, Q. Xu","doi":"10.1109/ICCAD.2017.8203770","DOIUrl":null,"url":null,"abstract":"Deep neural network (DNN), being able to effectively learn from a training set and provide highly accurate classification results, has become the de-facto technique used in many mission-critical systems. The security of DNN itself is therefore of great concern. In this paper, we investigate the impact of fault injection attacks on DNN, wherein attackers try to misclassify a specified input pattern into an adversarial class by modifying the parameters used in DNN via fault injection. We propose two kinds of fault injection attacks to achieve this objective. Without considering stealthiness of the attack, single bias attack (SBA) only requires to modify one parameter in DNN for misclassification, based on the observation that the outputs of DNN may linearly depend on some parameters. Gradient descent attack (GDA) takes stealthiness into consideration. By controlling the amount of modification to DNN parameters, GDA is able to minimize the fault injection impact on input patterns other than the specified one. Experimental results demonstrate the effectiveness and efficiency of the proposed attacks.","PeriodicalId":126686,"journal":{"name":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"157","resultStr":"{\"title\":\"Fault injection attack on deep neural network\",\"authors\":\"Yannan Liu, Lingxiao Wei, Bo Luo, Q. Xu\",\"doi\":\"10.1109/ICCAD.2017.8203770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural network (DNN), being able to effectively learn from a training set and provide highly accurate classification results, has become the de-facto technique used in many mission-critical systems. The security of DNN itself is therefore of great concern. In this paper, we investigate the impact of fault injection attacks on DNN, wherein attackers try to misclassify a specified input pattern into an adversarial class by modifying the parameters used in DNN via fault injection. We propose two kinds of fault injection attacks to achieve this objective. Without considering stealthiness of the attack, single bias attack (SBA) only requires to modify one parameter in DNN for misclassification, based on the observation that the outputs of DNN may linearly depend on some parameters. Gradient descent attack (GDA) takes stealthiness into consideration. By controlling the amount of modification to DNN parameters, GDA is able to minimize the fault injection impact on input patterns other than the specified one. Experimental results demonstrate the effectiveness and efficiency of the proposed attacks.\",\"PeriodicalId\":126686,\"journal\":{\"name\":\"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"157\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2017.8203770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2017.8203770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 157

摘要

深度神经网络(DNN)能够有效地从训练集中学习并提供高度准确的分类结果,已经成为许多关键任务系统中使用的事实上的技术。因此,深度神经网络本身的安全性备受关注。在本文中,我们研究了故障注入攻击对深度神经网络的影响,其中攻击者试图通过故障注入修改DNN中使用的参数,将指定的输入模式错误地分类为对抗类。我们提出了两种故障注入攻击来实现这一目标。单偏差攻击(single bias attack, SBA)基于DNN的输出可能线性依赖于某些参数的观察,在不考虑攻击的隐身性的情况下,只需要修改DNN中的一个参数就可以进行误分类。梯度下降攻击(GDA)考虑了隐身性。通过控制对DNN参数的修改量,GDA能够将故障注入对指定模式以外的输入模式的影响最小化。实验结果证明了所提攻击的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault injection attack on deep neural network
Deep neural network (DNN), being able to effectively learn from a training set and provide highly accurate classification results, has become the de-facto technique used in many mission-critical systems. The security of DNN itself is therefore of great concern. In this paper, we investigate the impact of fault injection attacks on DNN, wherein attackers try to misclassify a specified input pattern into an adversarial class by modifying the parameters used in DNN via fault injection. We propose two kinds of fault injection attacks to achieve this objective. Without considering stealthiness of the attack, single bias attack (SBA) only requires to modify one parameter in DNN for misclassification, based on the observation that the outputs of DNN may linearly depend on some parameters. Gradient descent attack (GDA) takes stealthiness into consideration. By controlling the amount of modification to DNN parameters, GDA is able to minimize the fault injection impact on input patterns other than the specified one. Experimental results demonstrate the effectiveness and efficiency of the proposed attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信