有限光谱数据稳定目标恢复的迭代算法

J. Abbiss, C. De Mol, H. Dhadwal
{"title":"有限光谱数据稳定目标恢复的迭代算法","authors":"J. Abbiss, C. De Mol, H. Dhadwal","doi":"10.1364/srs.1983.wa17","DOIUrl":null,"url":null,"abstract":"We analyse the problem of object restoration in the presence of noise, when the coherent image is formed by a space-invariant system consisting of a one-dimensional clear pupil extending over (−Ω, Ω). If the object distribution f(x) lies between −X and +X, the noiseless image \ng¯(y) formed by such a system would be given by the equation (1) In Fourier space, the solution to this equation is equivalent to infinite extrapolation of the truncated spectrum.","PeriodicalId":279385,"journal":{"name":"Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On an iterative algorithm for stabilised object restoration from limited spectral data\",\"authors\":\"J. Abbiss, C. De Mol, H. Dhadwal\",\"doi\":\"10.1364/srs.1983.wa17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyse the problem of object restoration in the presence of noise, when the coherent image is formed by a space-invariant system consisting of a one-dimensional clear pupil extending over (−Ω, Ω). If the object distribution f(x) lies between −X and +X, the noiseless image \\ng¯(y) formed by such a system would be given by the equation (1) In Fourier space, the solution to this equation is equivalent to infinite extrapolation of the truncated spectrum.\",\"PeriodicalId\":279385,\"journal\":{\"name\":\"Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints\",\"volume\":\"191 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/srs.1983.wa17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1983.wa17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了在存在噪声的情况下,当相干图像由一个由延伸到(−Ω, Ω)的一维清晰瞳孔组成的空间不变系统形成时,物体恢复的问题。如果目标分布f(x)在−x和+ x之间,则由该系统形成的无噪声图像g¯(y)由式(1)给出。在傅里叶空间中,该方程的解等价于截断频谱的无限外推。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On an iterative algorithm for stabilised object restoration from limited spectral data
We analyse the problem of object restoration in the presence of noise, when the coherent image is formed by a space-invariant system consisting of a one-dimensional clear pupil extending over (−Ω, Ω). If the object distribution f(x) lies between −X and +X, the noiseless image g¯(y) formed by such a system would be given by the equation (1) In Fourier space, the solution to this equation is equivalent to infinite extrapolation of the truncated spectrum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信