皮肤癌检测中特征学习的一种新的遗传规划表示

Q. Ain, Harith Al-Sahaf, Bing Xue, Mengjie Zhang
{"title":"皮肤癌检测中特征学习的一种新的遗传规划表示","authors":"Q. Ain, Harith Al-Sahaf, Bing Xue, Mengjie Zhang","doi":"10.1145/3583133.3590550","DOIUrl":null,"url":null,"abstract":"The process of automatically extracting informative high-level features from skin cancer images is enhanced by integrating well-developed feature descriptors into learning algorithms. This paper develops a new genetic programming-based feature learning approach to automatically select and combine six well-developed descriptors to extract high-level features for skin cancer image classification. The new approach can automatically learn various global features for image classification. The experimental results show that the new approach achieves significantly better classification performance than the baseline approach and six commonly used feature descriptors on two real-world skin image datasets.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Genetic Programming Representation for Feature Learning in Skin Cancer Detection\",\"authors\":\"Q. Ain, Harith Al-Sahaf, Bing Xue, Mengjie Zhang\",\"doi\":\"10.1145/3583133.3590550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of automatically extracting informative high-level features from skin cancer images is enhanced by integrating well-developed feature descriptors into learning algorithms. This paper develops a new genetic programming-based feature learning approach to automatically select and combine six well-developed descriptors to extract high-level features for skin cancer image classification. The new approach can automatically learn various global features for image classification. The experimental results show that the new approach achieves significantly better classification performance than the baseline approach and six commonly used feature descriptors on two real-world skin image datasets.\",\"PeriodicalId\":422029,\"journal\":{\"name\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3583133.3590550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3590550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过将成熟的特征描述符集成到学习算法中,增强了从皮肤癌图像中自动提取信息丰富的高级特征的过程。本文提出了一种新的基于遗传规划的特征学习方法,自动选择并组合6个成熟的描述符,提取高阶特征用于皮肤癌图像分类。该方法可以自动学习各种全局特征进行图像分类。实验结果表明,该方法在两个真实皮肤图像数据集上的分类性能明显优于基线方法和六种常用特征描述符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Genetic Programming Representation for Feature Learning in Skin Cancer Detection
The process of automatically extracting informative high-level features from skin cancer images is enhanced by integrating well-developed feature descriptors into learning algorithms. This paper develops a new genetic programming-based feature learning approach to automatically select and combine six well-developed descriptors to extract high-level features for skin cancer image classification. The new approach can automatically learn various global features for image classification. The experimental results show that the new approach achieves significantly better classification performance than the baseline approach and six commonly used feature descriptors on two real-world skin image datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信