使用梯度提升的自动驾驶车辆估计到达时间:公共交通的现实案例研究

Evangelos Antypas, Georgios Spanos, Antonios Lalas, K. Votis, D. Tzovaras
{"title":"使用梯度提升的自动驾驶车辆估计到达时间:公共交通的现实案例研究","authors":"Evangelos Antypas, Georgios Spanos, Antonios Lalas, K. Votis, D. Tzovaras","doi":"10.1109/ISC255366.2022.9921853","DOIUrl":null,"url":null,"abstract":"Autonomous Vehicles (AVs) are expected to revolutionise the methods of transportation. Research and innovation in this field is making huge leaps in the last few years, whether it considers vehicles used for private or public transport. Predicting the Estimated Time of Arrival (ETA) is a very important attribute associated with Public Transport (PT). Especially with the rise of AVs' adoption, PT is expected to follow this trend. Therefore, ETA prediction is deemed to be a service that interests the majority of PT stakeholders. PT is a field that automation benefits both stakeholders and commuters, and this research aims to provide a benchmark considering AVs in PT. Within this work, Gradient Boosting (GB) techniques for ETA prediction were employed, namely eXtreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost) and Light Gradient Boosting Machines (LightGBM). This study proposes competitive ETA prediction methods in Autonomous Buses, while the results of this research are very encouraging and aim to contribute to the overall investigations in the field of autonomous and automated PT.","PeriodicalId":277015,"journal":{"name":"2022 IEEE International Smart Cities Conference (ISC2)","volume":"80 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimated Time of Arrival in Autonomous Vehicles Using Gradient Boosting: Real-life case study in public transportation\",\"authors\":\"Evangelos Antypas, Georgios Spanos, Antonios Lalas, K. Votis, D. Tzovaras\",\"doi\":\"10.1109/ISC255366.2022.9921853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous Vehicles (AVs) are expected to revolutionise the methods of transportation. Research and innovation in this field is making huge leaps in the last few years, whether it considers vehicles used for private or public transport. Predicting the Estimated Time of Arrival (ETA) is a very important attribute associated with Public Transport (PT). Especially with the rise of AVs' adoption, PT is expected to follow this trend. Therefore, ETA prediction is deemed to be a service that interests the majority of PT stakeholders. PT is a field that automation benefits both stakeholders and commuters, and this research aims to provide a benchmark considering AVs in PT. Within this work, Gradient Boosting (GB) techniques for ETA prediction were employed, namely eXtreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost) and Light Gradient Boosting Machines (LightGBM). This study proposes competitive ETA prediction methods in Autonomous Buses, while the results of this research are very encouraging and aim to contribute to the overall investigations in the field of autonomous and automated PT.\",\"PeriodicalId\":277015,\"journal\":{\"name\":\"2022 IEEE International Smart Cities Conference (ISC2)\",\"volume\":\"80 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Smart Cities Conference (ISC2)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISC255366.2022.9921853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC255366.2022.9921853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动驾驶汽车(AVs)有望彻底改变交通方式。这一领域的研究和创新在过去几年里取得了巨大的飞跃,无论是用于私人还是公共交通的车辆。预计到达时间(ETA)是公共交通(PT)的一个重要属性。特别是随着自动驾驶汽车的普及,预计PT也将追随这一趋势。因此,ETA预测被认为是大多数PT利益相关者感兴趣的服务。PT是一个自动化对利益相关者和通勤者都有利的领域,本研究旨在为PT中的自动驾驶汽车提供一个基准。在这项工作中,采用梯度增强(GB)技术进行ETA预测,即极限梯度增强(XGBoost),分类增强(CatBoost)和光梯度增强机(LightGBM)。本研究提出了自动驾驶客车中具有竞争力的ETA预测方法,而本研究的结果非常令人鼓舞,旨在为自动驾驶和自动化PT领域的整体研究做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimated Time of Arrival in Autonomous Vehicles Using Gradient Boosting: Real-life case study in public transportation
Autonomous Vehicles (AVs) are expected to revolutionise the methods of transportation. Research and innovation in this field is making huge leaps in the last few years, whether it considers vehicles used for private or public transport. Predicting the Estimated Time of Arrival (ETA) is a very important attribute associated with Public Transport (PT). Especially with the rise of AVs' adoption, PT is expected to follow this trend. Therefore, ETA prediction is deemed to be a service that interests the majority of PT stakeholders. PT is a field that automation benefits both stakeholders and commuters, and this research aims to provide a benchmark considering AVs in PT. Within this work, Gradient Boosting (GB) techniques for ETA prediction were employed, namely eXtreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost) and Light Gradient Boosting Machines (LightGBM). This study proposes competitive ETA prediction methods in Autonomous Buses, while the results of this research are very encouraging and aim to contribute to the overall investigations in the field of autonomous and automated PT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信