概率与贝叶斯推理的类型论

Robin Adams, B. Jacobs
{"title":"概率与贝叶斯推理的类型论","authors":"Robin Adams, B. Jacobs","doi":"10.4230/LIPIcs.TYPES.2015.1","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel type theory and logic for probabilistic reasoning. Its logic is quantitative, with fuzzy predicates. It includes normalisation and conditioning of states. This conditioning uses a key aspect that distinguishes our probabilistic type theory from quantum type theory, namely the bijective correspondence between predicates and side-effect free actions (called instrument, or assert, maps). The paper shows how suitable computation rules can be derived from this predicate-action correspondence, and uses these rules for calculating conditional probabilities in two well-known examples of Bayesian reasoning in (graphical) models. Our type theory may thus form the basis for a mechanisation of Bayesian inference. 1998 ACM Subject Classification F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic — Lambda calculus and related systems; G.3 [Probability and Statistics]: Probabilistic algorithms; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs","PeriodicalId":131421,"journal":{"name":"Types for Proofs and Programs","volume":"225 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A Type Theory for Probabilistic and Bayesian Reasoning\",\"authors\":\"Robin Adams, B. Jacobs\",\"doi\":\"10.4230/LIPIcs.TYPES.2015.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel type theory and logic for probabilistic reasoning. Its logic is quantitative, with fuzzy predicates. It includes normalisation and conditioning of states. This conditioning uses a key aspect that distinguishes our probabilistic type theory from quantum type theory, namely the bijective correspondence between predicates and side-effect free actions (called instrument, or assert, maps). The paper shows how suitable computation rules can be derived from this predicate-action correspondence, and uses these rules for calculating conditional probabilities in two well-known examples of Bayesian reasoning in (graphical) models. Our type theory may thus form the basis for a mechanisation of Bayesian inference. 1998 ACM Subject Classification F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic — Lambda calculus and related systems; G.3 [Probability and Statistics]: Probabilistic algorithms; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs\",\"PeriodicalId\":131421,\"journal\":{\"name\":\"Types for Proofs and Programs\",\"volume\":\"225 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Types for Proofs and Programs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.TYPES.2015.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Types for Proofs and Programs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.TYPES.2015.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文介绍了一种新的概率推理类型理论和逻辑。它的逻辑是定量的,带有模糊的谓词。它包括常态化和状态调节。这种条件作用使用了区分我们的概率类型理论和量子类型理论的一个关键方面,即谓词和无副作用动作(称为工具或断言映射)之间的双射对应关系。本文展示了如何从这种谓词-动作对应中推导出合适的计算规则,并在两个著名的贝叶斯推理(图)模型的例子中使用这些规则来计算条件概率。因此,我们的类型理论可以构成贝叶斯推理机械化的基础。1998 ACM学科分类F.4.1[数理逻辑和形式语言]:数理逻辑- Lambda演算和相关系统;G.3[概率与统计]:概率算法;F.3.1【程序的逻辑和意义】:程序的规定、验证和推理
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Type Theory for Probabilistic and Bayesian Reasoning
This paper introduces a novel type theory and logic for probabilistic reasoning. Its logic is quantitative, with fuzzy predicates. It includes normalisation and conditioning of states. This conditioning uses a key aspect that distinguishes our probabilistic type theory from quantum type theory, namely the bijective correspondence between predicates and side-effect free actions (called instrument, or assert, maps). The paper shows how suitable computation rules can be derived from this predicate-action correspondence, and uses these rules for calculating conditional probabilities in two well-known examples of Bayesian reasoning in (graphical) models. Our type theory may thus form the basis for a mechanisation of Bayesian inference. 1998 ACM Subject Classification F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic — Lambda calculus and related systems; G.3 [Probability and Statistics]: Probabilistic algorithms; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信