基于细胞神经网络的动态逻辑门的实现与改进

Xiaozheng Yuan, Wenbo Liu
{"title":"基于细胞神经网络的动态逻辑门的实现与改进","authors":"Xiaozheng Yuan, Wenbo Liu","doi":"10.1109/IWCFTA.2012.30","DOIUrl":null,"url":null,"abstract":"This Paper explores using a non-linear system to construct dynamic logic architecture-cellular neural networks (CNN). The proposed CNN schemes can discriminate the two input signals and switch easily among different 16 kinds of operational roles by changing parameters. Each logic cell performs more flexibly, that makes it possible to achieve complex logic operations and construct computing architecture with less logic cells. We also proposed a new formula of hysteresis CNN to ensure that the output is strict binary.","PeriodicalId":354870,"journal":{"name":"2012 Fifth International Workshop on Chaos-fractals Theories and Applications","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Implementation and Improvement of Dynamic Logic Gates Based on Cellular Neural Networks\",\"authors\":\"Xiaozheng Yuan, Wenbo Liu\",\"doi\":\"10.1109/IWCFTA.2012.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This Paper explores using a non-linear system to construct dynamic logic architecture-cellular neural networks (CNN). The proposed CNN schemes can discriminate the two input signals and switch easily among different 16 kinds of operational roles by changing parameters. Each logic cell performs more flexibly, that makes it possible to achieve complex logic operations and construct computing architecture with less logic cells. We also proposed a new formula of hysteresis CNN to ensure that the output is strict binary.\",\"PeriodicalId\":354870,\"journal\":{\"name\":\"2012 Fifth International Workshop on Chaos-fractals Theories and Applications\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fifth International Workshop on Chaos-fractals Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCFTA.2012.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth International Workshop on Chaos-fractals Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCFTA.2012.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文探讨了使用非线性系统来构建动态逻辑体系-细胞神经网络(CNN)。所提出的CNN方案可以区分两个输入信号,并通过改变参数在16种不同的操作角色之间轻松切换。每个逻辑单元的执行更加灵活,可以用更少的逻辑单元实现复杂的逻辑运算和构建计算体系结构。我们还提出了一种新的迟滞CNN公式,以保证输出是严格二进制的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation and Improvement of Dynamic Logic Gates Based on Cellular Neural Networks
This Paper explores using a non-linear system to construct dynamic logic architecture-cellular neural networks (CNN). The proposed CNN schemes can discriminate the two input signals and switch easily among different 16 kinds of operational roles by changing parameters. Each logic cell performs more flexibly, that makes it possible to achieve complex logic operations and construct computing architecture with less logic cells. We also proposed a new formula of hysteresis CNN to ensure that the output is strict binary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信