基于无监督张量子空间的小波域多光谱图像去噪方法

A. Zidi, K. Spinnler, J. Marot, S. Bourennane
{"title":"基于无监督张量子空间的小波域多光谱图像去噪方法","authors":"A. Zidi, K. Spinnler, J. Marot, S. Bourennane","doi":"10.1109/EUVIP.2016.7764599","DOIUrl":null,"url":null,"abstract":"Multiway Wiener filtering has been inserted in a wavelet framework to enhance spatial details while denoising multidimensional images. An elevated number of rank values is required. A solution is to retrieve the best rank values while minimizing a mean square criterion. In this paper, we justify the adaptation for this purpose of a stochastic optimization method, and we evaluate comparatively a genetic algorithm and particle swarm optimization. Results obtained on multispectral images in terms of signal to noise ratio and perceptual image quality permit to emphasize the performance of the obtained unsupervised method for realistic noise magnitudes.","PeriodicalId":136980,"journal":{"name":"2016 6th European Workshop on Visual Information Processing (EUVIP)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multispectral image denoising in wavelet domain with unsupervised tensor subspace-based method\",\"authors\":\"A. Zidi, K. Spinnler, J. Marot, S. Bourennane\",\"doi\":\"10.1109/EUVIP.2016.7764599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiway Wiener filtering has been inserted in a wavelet framework to enhance spatial details while denoising multidimensional images. An elevated number of rank values is required. A solution is to retrieve the best rank values while minimizing a mean square criterion. In this paper, we justify the adaptation for this purpose of a stochastic optimization method, and we evaluate comparatively a genetic algorithm and particle swarm optimization. Results obtained on multispectral images in terms of signal to noise ratio and perceptual image quality permit to emphasize the performance of the obtained unsupervised method for realistic noise magnitudes.\",\"PeriodicalId\":136980,\"journal\":{\"name\":\"2016 6th European Workshop on Visual Information Processing (EUVIP)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th European Workshop on Visual Information Processing (EUVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUVIP.2016.7764599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2016.7764599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在小波框架中插入多路维纳滤波,增强空间细节,同时去噪多维图像。需要增加等级值的数量。一种解决方案是在最小化均方准则的同时检索最佳秩值。本文对随机优化方法的适应性进行了论证,并对遗传算法和粒子群算法进行了比较评价。在多光谱图像上获得的信噪比和感知图像质量的结果可以强调所获得的无监督方法对真实噪声大小的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multispectral image denoising in wavelet domain with unsupervised tensor subspace-based method
Multiway Wiener filtering has been inserted in a wavelet framework to enhance spatial details while denoising multidimensional images. An elevated number of rank values is required. A solution is to retrieve the best rank values while minimizing a mean square criterion. In this paper, we justify the adaptation for this purpose of a stochastic optimization method, and we evaluate comparatively a genetic algorithm and particle swarm optimization. Results obtained on multispectral images in terms of signal to noise ratio and perceptual image quality permit to emphasize the performance of the obtained unsupervised method for realistic noise magnitudes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信