用于混合定位的高效高斯混合滤波器

S. Ali-Loytty
{"title":"用于混合定位的高效高斯混合滤波器","authors":"S. Ali-Loytty","doi":"10.1109/PLANS.2008.4569970","DOIUrl":null,"url":null,"abstract":"This paper presents a new way to apply Gaussian mixture filter (GMF) to hybrid positioning. The idea of this new GMF (efficient Gaussian mixture filter, EGMF) is to split the state space into pieces using parallel planes and approximate posterior in every piece as Gaussian. EGMF outperforms the traditional single-component positioning filters, for example the extended Kalman filter and the unscented Kalman filter, in nonlinear hybrid positioning. Furthermore, EGMF has some advantages with respect to other GMF variants, for example EGMF gives the same or better performance than the sigma point Gaussian mixture (SPGM) [1] with a smaller number of mixture components, i.e. smaller computational and memory requirements. If we consider only one time step, EGMF gives optimal results in the linear case, in the sense of mean and covariance, whereas other GMFs gives suboptimal results.","PeriodicalId":446381,"journal":{"name":"2008 IEEE/ION Position, Location and Navigation Symposium","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Efficient Gaussian mixture filter for hybrid positioning\",\"authors\":\"S. Ali-Loytty\",\"doi\":\"10.1109/PLANS.2008.4569970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new way to apply Gaussian mixture filter (GMF) to hybrid positioning. The idea of this new GMF (efficient Gaussian mixture filter, EGMF) is to split the state space into pieces using parallel planes and approximate posterior in every piece as Gaussian. EGMF outperforms the traditional single-component positioning filters, for example the extended Kalman filter and the unscented Kalman filter, in nonlinear hybrid positioning. Furthermore, EGMF has some advantages with respect to other GMF variants, for example EGMF gives the same or better performance than the sigma point Gaussian mixture (SPGM) [1] with a smaller number of mixture components, i.e. smaller computational and memory requirements. If we consider only one time step, EGMF gives optimal results in the linear case, in the sense of mean and covariance, whereas other GMFs gives suboptimal results.\",\"PeriodicalId\":446381,\"journal\":{\"name\":\"2008 IEEE/ION Position, Location and Navigation Symposium\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE/ION Position, Location and Navigation Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS.2008.4569970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE/ION Position, Location and Navigation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2008.4569970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

提出了一种将高斯混合滤波(GMF)应用于混合定位的新方法。这种新的GMF(高效高斯混合滤波器,EGMF)的思想是使用平行平面将状态空间分割成块,并将每个块的后验近似为高斯。EGMF在非线性混合定位中优于传统的单分量定位滤波器,如扩展卡尔曼滤波器和无气味卡尔曼滤波器。此外,相对于其他GMF变体,EGMF具有一些优势,例如,EGMF具有与sigma点高斯混合(SPGM)[1]相同或更好的性能,混合成分数量更少,即计算和内存需求更小。如果我们只考虑一个时间步长,在均值和协方差的意义上,EGMF在线性情况下给出最优结果,而其他gmf给出次优结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Gaussian mixture filter for hybrid positioning
This paper presents a new way to apply Gaussian mixture filter (GMF) to hybrid positioning. The idea of this new GMF (efficient Gaussian mixture filter, EGMF) is to split the state space into pieces using parallel planes and approximate posterior in every piece as Gaussian. EGMF outperforms the traditional single-component positioning filters, for example the extended Kalman filter and the unscented Kalman filter, in nonlinear hybrid positioning. Furthermore, EGMF has some advantages with respect to other GMF variants, for example EGMF gives the same or better performance than the sigma point Gaussian mixture (SPGM) [1] with a smaller number of mixture components, i.e. smaller computational and memory requirements. If we consider only one time step, EGMF gives optimal results in the linear case, in the sense of mean and covariance, whereas other GMFs gives suboptimal results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信