非线性实验室双旋翼气动系统模型预测控制

Dan-Adrian Duţescu, M. Radac, R. Precup
{"title":"非线性实验室双旋翼气动系统模型预测控制","authors":"Dan-Adrian Duţescu, M. Radac, R. Precup","doi":"10.1109/SAMI.2017.7880339","DOIUrl":null,"url":null,"abstract":"Model predictive control (MPC) represents a powerful technique for controlling a system that has an accurate mathematical model for describing its behavior. MPC implies solving an optimization problem (OP) in order to minimize some user defined objective function (OF) subjected to constraints on the characteristic variables. This paper presents a real-time implementation of a nonlinear MPC on a twin rotor aerodynamic system (TRAS). The mathematical model of TRAS is a nonlinear one and has only four measurable states out of six. In order to benefit from state-of-the-art OP solvers, online linearization of the TRAS mathematical model is used both for transforming the OP into a convex one and also for optimal estimation of the states using and Extended Kalman Filter (EKF) approach. Detailed implementation and validation of the proposed MPC approach is offered with insightful discussions.","PeriodicalId":105599,"journal":{"name":"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Model predictive control of a nonlinear laboratory twin rotor aero-dynamical system\",\"authors\":\"Dan-Adrian Duţescu, M. Radac, R. Precup\",\"doi\":\"10.1109/SAMI.2017.7880339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model predictive control (MPC) represents a powerful technique for controlling a system that has an accurate mathematical model for describing its behavior. MPC implies solving an optimization problem (OP) in order to minimize some user defined objective function (OF) subjected to constraints on the characteristic variables. This paper presents a real-time implementation of a nonlinear MPC on a twin rotor aerodynamic system (TRAS). The mathematical model of TRAS is a nonlinear one and has only four measurable states out of six. In order to benefit from state-of-the-art OP solvers, online linearization of the TRAS mathematical model is used both for transforming the OP into a convex one and also for optimal estimation of the states using and Extended Kalman Filter (EKF) approach. Detailed implementation and validation of the proposed MPC approach is offered with insightful discussions.\",\"PeriodicalId\":105599,\"journal\":{\"name\":\"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI.2017.7880339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2017.7880339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

模型预测控制(MPC)是一种强大的技术,用于控制具有精确数学模型来描述其行为的系统。MPC指的是在特征变量的约束下,为了最小化用户定义的目标函数而求解优化问题(OP)。提出了一种在双转子气动系统(TRAS)上实时实现非线性MPC的方法。TRAS的数学模型是非线性的,在6个状态中只有4个状态是可测量的。为了从最先进的OP求解器中获益,TRAS数学模型的在线线性化既用于将OP转换为凸OP,也用于使用扩展卡尔曼滤波器(EKF)方法对状态进行最优估计。提出了MPC方法的详细实施和验证,并进行了有见地的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model predictive control of a nonlinear laboratory twin rotor aero-dynamical system
Model predictive control (MPC) represents a powerful technique for controlling a system that has an accurate mathematical model for describing its behavior. MPC implies solving an optimization problem (OP) in order to minimize some user defined objective function (OF) subjected to constraints on the characteristic variables. This paper presents a real-time implementation of a nonlinear MPC on a twin rotor aerodynamic system (TRAS). The mathematical model of TRAS is a nonlinear one and has only four measurable states out of six. In order to benefit from state-of-the-art OP solvers, online linearization of the TRAS mathematical model is used both for transforming the OP into a convex one and also for optimal estimation of the states using and Extended Kalman Filter (EKF) approach. Detailed implementation and validation of the proposed MPC approach is offered with insightful discussions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信