基于动态遗传算法的流多层集成选择

Anh Vu Luong, T. Nguyen, Alan Wee-Chung Liew
{"title":"基于动态遗传算法的流多层集成选择","authors":"Anh Vu Luong, T. Nguyen, Alan Wee-Chung Liew","doi":"10.1109/DICTA52665.2021.9647220","DOIUrl":null,"url":null,"abstract":"In this study, we introduce a novel framework for non-stationary data stream classification problems by modifying the Genetic Algorithm to search for the optimal configuration of a streaming multi-layer ensemble. We aim to connect the two sub-fields of non-stationary stream classification and evolutionary dynamic optimization. First, we present Streaming Multi-layer Ensemble (SMiLE) - a novel classification algorithm for nonstationary data streams which comprises multiple layers of different classifiers. Second, we develop an ensemble selection method to obtain an optimal subset of classifiers for each layer of SMiLE. We formulate the selection process as a dynamic optimization problem and then solve it by adapting the Genetic Algorithm to the stream setting, generating a new classification framework called SMiLE_GA. Finally, we apply the proposed framework to address a real-world problem of insect stream classification, which relates to the automatic recognition of insects through optical sensors in real-time. The experiments showed that the proposed method achieves better prediction accuracy than several state-of-the-art benchmark algorithms for non-stationary data stream classification.","PeriodicalId":424950,"journal":{"name":"2021 Digital Image Computing: Techniques and Applications (DICTA)","volume":"26 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Streaming Multi-layer Ensemble Selection using Dynamic Genetic Algorithm\",\"authors\":\"Anh Vu Luong, T. Nguyen, Alan Wee-Chung Liew\",\"doi\":\"10.1109/DICTA52665.2021.9647220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we introduce a novel framework for non-stationary data stream classification problems by modifying the Genetic Algorithm to search for the optimal configuration of a streaming multi-layer ensemble. We aim to connect the two sub-fields of non-stationary stream classification and evolutionary dynamic optimization. First, we present Streaming Multi-layer Ensemble (SMiLE) - a novel classification algorithm for nonstationary data streams which comprises multiple layers of different classifiers. Second, we develop an ensemble selection method to obtain an optimal subset of classifiers for each layer of SMiLE. We formulate the selection process as a dynamic optimization problem and then solve it by adapting the Genetic Algorithm to the stream setting, generating a new classification framework called SMiLE_GA. Finally, we apply the proposed framework to address a real-world problem of insect stream classification, which relates to the automatic recognition of insects through optical sensors in real-time. The experiments showed that the proposed method achieves better prediction accuracy than several state-of-the-art benchmark algorithms for non-stationary data stream classification.\",\"PeriodicalId\":424950,\"journal\":{\"name\":\"2021 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"26 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA52665.2021.9647220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA52665.2021.9647220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本研究中,我们引入了一种新的框架来解决非平稳数据流分类问题,该框架通过修改遗传算法来搜索流多层集成的最佳配置。我们的目标是将非平稳流分类和进化动态优化这两个子领域联系起来。首先,我们提出了一种新的非平稳数据流分类算法——流多层集成(SMiLE),该算法由多层不同的分类器组成。其次,我们开发了一种集成选择方法来获得SMiLE每层分类器的最优子集。我们将选择过程描述为一个动态优化问题,然后通过将遗传算法适应流设置来解决它,生成一个新的分类框架,称为SMiLE_GA。最后,我们将提出的框架应用于昆虫流分类的实际问题,该问题涉及到通过光学传感器实时自动识别昆虫。实验表明,该方法对非平稳数据流分类的预测精度优于几种最先进的基准算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Streaming Multi-layer Ensemble Selection using Dynamic Genetic Algorithm
In this study, we introduce a novel framework for non-stationary data stream classification problems by modifying the Genetic Algorithm to search for the optimal configuration of a streaming multi-layer ensemble. We aim to connect the two sub-fields of non-stationary stream classification and evolutionary dynamic optimization. First, we present Streaming Multi-layer Ensemble (SMiLE) - a novel classification algorithm for nonstationary data streams which comprises multiple layers of different classifiers. Second, we develop an ensemble selection method to obtain an optimal subset of classifiers for each layer of SMiLE. We formulate the selection process as a dynamic optimization problem and then solve it by adapting the Genetic Algorithm to the stream setting, generating a new classification framework called SMiLE_GA. Finally, we apply the proposed framework to address a real-world problem of insect stream classification, which relates to the automatic recognition of insects through optical sensors in real-time. The experiments showed that the proposed method achieves better prediction accuracy than several state-of-the-art benchmark algorithms for non-stationary data stream classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信