感应电机的外磁场及相关系数诊断

M. Irhoumah, R. Pusca, E. Lefevre, D. Mercier, R. Romary
{"title":"感应电机的外磁场及相关系数诊断","authors":"M. Irhoumah, R. Pusca, E. Lefevre, D. Mercier, R. Romary","doi":"10.1109/DEMPED.2017.8062406","DOIUrl":null,"url":null,"abstract":"The statistical analysis of faulty induction machine has proved to be a useful tool for prediction of main effects due to faults. So this paper proposes a mathematical model for diagnosis of the inter-turn short circuit in the stator winding of electrical machines. This model uses the Pearson correlation coefficient and a pair of sensors, placed at 180° from each other around the machine to measure the external magnetic field in the machine vicinity. The data obtained from each sensor are analyzed and compared with each other when the load varies. It will be shown that one can obtain high probability to detect the fault using this method and experimental results show that the new method has high reliability level for fault detection. On the other hand, the presented method does not require any knowledge of a presumed machine healthy former state.","PeriodicalId":325413,"journal":{"name":"2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Diagnosis of induction machines using external magnetic field and correlation coefficient\",\"authors\":\"M. Irhoumah, R. Pusca, E. Lefevre, D. Mercier, R. Romary\",\"doi\":\"10.1109/DEMPED.2017.8062406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The statistical analysis of faulty induction machine has proved to be a useful tool for prediction of main effects due to faults. So this paper proposes a mathematical model for diagnosis of the inter-turn short circuit in the stator winding of electrical machines. This model uses the Pearson correlation coefficient and a pair of sensors, placed at 180° from each other around the machine to measure the external magnetic field in the machine vicinity. The data obtained from each sensor are analyzed and compared with each other when the load varies. It will be shown that one can obtain high probability to detect the fault using this method and experimental results show that the new method has high reliability level for fault detection. On the other hand, the presented method does not require any knowledge of a presumed machine healthy former state.\",\"PeriodicalId\":325413,\"journal\":{\"name\":\"2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEMPED.2017.8062406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2017.8062406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

故障感应电机的统计分析已被证明是预测故障主要影响的有效工具。为此,本文提出了电机定子绕组匝间短路诊断的数学模型。该模型使用Pearson相关系数和一对传感器,在机器周围彼此放置180°,以测量机器附近的外部磁场。在负载变化时,对各传感器获得的数据进行分析和比较。实验结果表明,该方法可以获得较高的故障检测概率,并具有较高的故障检测可靠性。另一方面,所提出的方法不需要任何关于假定的机器健康状态的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagnosis of induction machines using external magnetic field and correlation coefficient
The statistical analysis of faulty induction machine has proved to be a useful tool for prediction of main effects due to faults. So this paper proposes a mathematical model for diagnosis of the inter-turn short circuit in the stator winding of electrical machines. This model uses the Pearson correlation coefficient and a pair of sensors, placed at 180° from each other around the machine to measure the external magnetic field in the machine vicinity. The data obtained from each sensor are analyzed and compared with each other when the load varies. It will be shown that one can obtain high probability to detect the fault using this method and experimental results show that the new method has high reliability level for fault detection. On the other hand, the presented method does not require any knowledge of a presumed machine healthy former state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信