用均方根误差进行正则化的模态预测的性质

Ghudae Sim, Hyungbin Yun, Junhee Seok
{"title":"用均方根误差进行正则化的模态预测的性质","authors":"Ghudae Sim, Hyungbin Yun, Junhee Seok","doi":"10.1109/ICAIIC.2019.8669016","DOIUrl":null,"url":null,"abstract":"While it is popular, estimating empirical distribution from observed data using MSE (Mean Squared Error) is often inefficient because it focuses on expectation. To address this problem, here we invest a new type of error term, named MRE (Mean Root Error). Different from MSE, MRE can predict the local mode point rather than the expectation. From numerical studies, we show that MRE models shows more robust and accurate prediction performance, which will be useful for complicated data such as finance data.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Properties of mode prediction using mean root error for regularization\",\"authors\":\"Ghudae Sim, Hyungbin Yun, Junhee Seok\",\"doi\":\"10.1109/ICAIIC.2019.8669016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While it is popular, estimating empirical distribution from observed data using MSE (Mean Squared Error) is often inefficient because it focuses on expectation. To address this problem, here we invest a new type of error term, named MRE (Mean Root Error). Different from MSE, MRE can predict the local mode point rather than the expectation. From numerical studies, we show that MRE models shows more robust and accurate prediction performance, which will be useful for complicated data such as finance data.\",\"PeriodicalId\":273383,\"journal\":{\"name\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIIC.2019.8669016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8669016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

虽然它很流行,但使用MSE(均方误差)从观察到的数据估计经验分布通常效率低下,因为它关注的是期望。为了解决这个问题,这里我们引入了一种新的错误项,称为MRE (Mean Root error)。与MSE不同的是,MRE可以预测局部模态点而不是期望。数值研究表明,MRE模型具有更强的鲁棒性和更准确的预测性能,对于复杂的金融数据具有一定的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Properties of mode prediction using mean root error for regularization
While it is popular, estimating empirical distribution from observed data using MSE (Mean Squared Error) is often inefficient because it focuses on expectation. To address this problem, here we invest a new type of error term, named MRE (Mean Root Error). Different from MSE, MRE can predict the local mode point rather than the expectation. From numerical studies, we show that MRE models shows more robust and accurate prediction performance, which will be useful for complicated data such as finance data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信