基于LSTM卷积自编码器的克氏锥虫检测

Geovani L. Martins, Daniel S. Ferreira, C. Carneiro, A. G. Bianchi
{"title":"基于LSTM卷积自编码器的克氏锥虫检测","authors":"Geovani L. Martins, Daniel S. Ferreira, C. Carneiro, A. G. Bianchi","doi":"10.5753/sbcas.2023.230153","DOIUrl":null,"url":null,"abstract":"The presence of Trypanosoma cruzi (T. cruzi) parasites in blood samples is proof of the medical diagnosis of Chagas disease. Since the motion of these microorganisms is conspicuous in optical microscopy videos, we propose a spatio-temporal autoencoder for anomaly detection caused by parasite motility. This approach includes a spatial feature extractor and a temporal sequencer ConvLSTM for learning the temporal evolution of the spatial features. We trained the autoencoder with no parasites videos to learn the normal pattern and measured the regularity score in test videos with parasites. Our results showed that an LSTM-based autoencoder may identify T. cruzi anomalous motion, being a promising method for detecting parasites in microscopy videos.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trypanosoma cruzi Detection using LSTM Convolutional Autoencoder\",\"authors\":\"Geovani L. Martins, Daniel S. Ferreira, C. Carneiro, A. G. Bianchi\",\"doi\":\"10.5753/sbcas.2023.230153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The presence of Trypanosoma cruzi (T. cruzi) parasites in blood samples is proof of the medical diagnosis of Chagas disease. Since the motion of these microorganisms is conspicuous in optical microscopy videos, we propose a spatio-temporal autoencoder for anomaly detection caused by parasite motility. This approach includes a spatial feature extractor and a temporal sequencer ConvLSTM for learning the temporal evolution of the spatial features. We trained the autoencoder with no parasites videos to learn the normal pattern and measured the regularity score in test videos with parasites. Our results showed that an LSTM-based autoencoder may identify T. cruzi anomalous motion, being a promising method for detecting parasites in microscopy videos.\",\"PeriodicalId\":122965,\"journal\":{\"name\":\"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"volume\":\"180 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbcas.2023.230153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.230153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

血液样本中存在克氏锥虫(克氏锥虫)寄生虫是恰加斯病医学诊断的证据。由于这些微生物的运动在光学显微镜视频中很明显,我们提出了一种时空自编码器,用于寄生虫运动引起的异常检测。该方法包括空间特征提取器和时间序列器ConvLSTM,用于学习空间特征的时间演化。我们训练无寄生虫视频的自编码器学习正常模式,并在有寄生虫的测试视频中测量规则性分数。我们的研究结果表明,基于lstm的自编码器可以识别克氏锥虫的异常运动,是一种很有前途的检测显微镜视频中寄生虫的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trypanosoma cruzi Detection using LSTM Convolutional Autoencoder
The presence of Trypanosoma cruzi (T. cruzi) parasites in blood samples is proof of the medical diagnosis of Chagas disease. Since the motion of these microorganisms is conspicuous in optical microscopy videos, we propose a spatio-temporal autoencoder for anomaly detection caused by parasite motility. This approach includes a spatial feature extractor and a temporal sequencer ConvLSTM for learning the temporal evolution of the spatial features. We trained the autoencoder with no parasites videos to learn the normal pattern and measured the regularity score in test videos with parasites. Our results showed that an LSTM-based autoencoder may identify T. cruzi anomalous motion, being a promising method for detecting parasites in microscopy videos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信