基于粒子群优化的RBF神经网络模型研究

Yue Meng, Yuedong Zhang
{"title":"基于粒子群优化的RBF神经网络模型研究","authors":"Yue Meng, Yuedong Zhang","doi":"10.1109/ISAIEE57420.2022.00062","DOIUrl":null,"url":null,"abstract":"Intelligence for particle swarm optimization neural network algorithm. Based on the conventional PSO algorithm, the center of the basis function, the width of the basis function and the connection weight between the output layer and the hidden layer of the RBF neural network are optimized. The conclusion shows that the detection method studied in this paper has faster recognition speed and better recognition accuracy, and avoids the situation of falling into the local optimal solution.","PeriodicalId":345703,"journal":{"name":"2022 International Symposium on Advances in Informatics, Electronics and Education (ISAIEE)","volume":"228 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on RBF Neural Network Model Based on Particle Swarm Optimization\",\"authors\":\"Yue Meng, Yuedong Zhang\",\"doi\":\"10.1109/ISAIEE57420.2022.00062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intelligence for particle swarm optimization neural network algorithm. Based on the conventional PSO algorithm, the center of the basis function, the width of the basis function and the connection weight between the output layer and the hidden layer of the RBF neural network are optimized. The conclusion shows that the detection method studied in this paper has faster recognition speed and better recognition accuracy, and avoids the situation of falling into the local optimal solution.\",\"PeriodicalId\":345703,\"journal\":{\"name\":\"2022 International Symposium on Advances in Informatics, Electronics and Education (ISAIEE)\",\"volume\":\"228 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Advances in Informatics, Electronics and Education (ISAIEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAIEE57420.2022.00062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Advances in Informatics, Electronics and Education (ISAIEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAIEE57420.2022.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

智能粒子群优化神经网络算法。在传统粒子群算法的基础上,优化了RBF神经网络的基函数中心、基函数宽度以及输出层与隐藏层之间的连接权值。结论表明,本文研究的检测方法具有更快的识别速度和更好的识别精度,避免了陷入局部最优解的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on RBF Neural Network Model Based on Particle Swarm Optimization
Intelligence for particle swarm optimization neural network algorithm. Based on the conventional PSO algorithm, the center of the basis function, the width of the basis function and the connection weight between the output layer and the hidden layer of the RBF neural network are optimized. The conclusion shows that the detection method studied in this paper has faster recognition speed and better recognition accuracy, and avoids the situation of falling into the local optimal solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信