问题与策略:内部对称网络的反向传播循环过拟合

Guanzhong Li
{"title":"问题与策略:内部对称网络的反向传播循环过拟合","authors":"Guanzhong Li","doi":"10.1109/CINC.2009.258","DOIUrl":null,"url":null,"abstract":"Overfitting is an important topic in Neural Network. Internal Symmetry Networks are a new modern Cellular Neural Networks inspired by the phenomenon of internal symmetry in quantum physics. Recurrent Internal Symmetry Networks are just studied very recently. In this paper, overfitting in recurrent cycles of Internal Symmetry Networks is analyzed. Back propagation is trained for an image processing task.","PeriodicalId":173506,"journal":{"name":"2009 International Conference on Computational Intelligence and Natural Computing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Problem and Strategy: Overfitting in Recurrent Cycles of Internal Symmetry Networks by Back Propagation\",\"authors\":\"Guanzhong Li\",\"doi\":\"10.1109/CINC.2009.258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Overfitting is an important topic in Neural Network. Internal Symmetry Networks are a new modern Cellular Neural Networks inspired by the phenomenon of internal symmetry in quantum physics. Recurrent Internal Symmetry Networks are just studied very recently. In this paper, overfitting in recurrent cycles of Internal Symmetry Networks is analyzed. Back propagation is trained for an image processing task.\",\"PeriodicalId\":173506,\"journal\":{\"name\":\"2009 International Conference on Computational Intelligence and Natural Computing\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Computational Intelligence and Natural Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINC.2009.258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2009.258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

过拟合是神经网络中的一个重要问题。内部对称网络是受量子物理中内部对称现象启发而产生的一种新型的现代细胞神经网络。循环内部对称网络是最近才开始研究的。本文分析了内部对称网络循环中的过拟合问题。反向传播训练用于图像处理任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Problem and Strategy: Overfitting in Recurrent Cycles of Internal Symmetry Networks by Back Propagation
Overfitting is an important topic in Neural Network. Internal Symmetry Networks are a new modern Cellular Neural Networks inspired by the phenomenon of internal symmetry in quantum physics. Recurrent Internal Symmetry Networks are just studied very recently. In this paper, overfitting in recurrent cycles of Internal Symmetry Networks is analyzed. Back propagation is trained for an image processing task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信