使用动态t-SNE可视化时间相关数据

P. E. Rauber, A. Falcão, A. Telea
{"title":"使用动态t-SNE可视化时间相关数据","authors":"P. E. Rauber, A. Falcão, A. Telea","doi":"10.2312/eurovisshort.20161164","DOIUrl":null,"url":null,"abstract":"Many interesting processes can be represented as time-dependent datasets. We define a time-dependent dataset as a sequence of datasets captured at particular time steps. In such a sequence, each dataset is composed of observations (high-dimensional real vectors), and each observation has a corresponding observation across time steps. Dimensionality reduction provides a scalable alternative to create visualizations (projections) that enable insight into the structure of such datasets. However, applying dimensionality reduction independently for each dataset in a sequence may introduce unnecessary variability in the resulting sequence of projections, which makes tracking the evolution of the data significantly more challenging. We show that this issue affects t-SNE, a widely used dimensionality reduction technique. In this context, we propose dynamic t-SNE, an adaptation of t-SNE that introduces a controllable trade-off between temporal coherence and projection reliability. Our evaluation in two time-dependent datasets shows that dynamic t-SNE eliminates unnecessary temporal variability and encourages smooth changes between projections.","PeriodicalId":224719,"journal":{"name":"Eurographics Conference on Visualization","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"148","resultStr":"{\"title\":\"Visualizing Time-Dependent Data Using Dynamic t-SNE\",\"authors\":\"P. E. Rauber, A. Falcão, A. Telea\",\"doi\":\"10.2312/eurovisshort.20161164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many interesting processes can be represented as time-dependent datasets. We define a time-dependent dataset as a sequence of datasets captured at particular time steps. In such a sequence, each dataset is composed of observations (high-dimensional real vectors), and each observation has a corresponding observation across time steps. Dimensionality reduction provides a scalable alternative to create visualizations (projections) that enable insight into the structure of such datasets. However, applying dimensionality reduction independently for each dataset in a sequence may introduce unnecessary variability in the resulting sequence of projections, which makes tracking the evolution of the data significantly more challenging. We show that this issue affects t-SNE, a widely used dimensionality reduction technique. In this context, we propose dynamic t-SNE, an adaptation of t-SNE that introduces a controllable trade-off between temporal coherence and projection reliability. Our evaluation in two time-dependent datasets shows that dynamic t-SNE eliminates unnecessary temporal variability and encourages smooth changes between projections.\",\"PeriodicalId\":224719,\"journal\":{\"name\":\"Eurographics Conference on Visualization\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"148\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurographics Conference on Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/eurovisshort.20161164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Conference on Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/eurovisshort.20161164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 148

摘要

许多有趣的过程可以表示为与时间相关的数据集。我们将时间相关数据集定义为在特定时间步捕获的数据集序列。在该序列中,每个数据集由观测值(高维实向量)组成,每个观测值在时间步长上都有相应的观测值。降维提供了一种可伸缩的替代方法来创建可视化(投影),从而能够深入了解这些数据集的结构。然而,对序列中的每个数据集独立应用降维可能会在生成的预测序列中引入不必要的变化,这使得跟踪数据的演变更具挑战性。我们发现这个问题影响了t-SNE,一种广泛使用的降维技术。在这种背景下,我们提出了动态t-SNE,这是对t-SNE的一种适应,在时间相干性和投影可靠性之间引入了一种可控的权衡。我们对两个时间相关数据集的评估表明,动态t-SNE消除了不必要的时间变异性,并促进了预估之间的平滑变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualizing Time-Dependent Data Using Dynamic t-SNE
Many interesting processes can be represented as time-dependent datasets. We define a time-dependent dataset as a sequence of datasets captured at particular time steps. In such a sequence, each dataset is composed of observations (high-dimensional real vectors), and each observation has a corresponding observation across time steps. Dimensionality reduction provides a scalable alternative to create visualizations (projections) that enable insight into the structure of such datasets. However, applying dimensionality reduction independently for each dataset in a sequence may introduce unnecessary variability in the resulting sequence of projections, which makes tracking the evolution of the data significantly more challenging. We show that this issue affects t-SNE, a widely used dimensionality reduction technique. In this context, we propose dynamic t-SNE, an adaptation of t-SNE that introduces a controllable trade-off between temporal coherence and projection reliability. Our evaluation in two time-dependent datasets shows that dynamic t-SNE eliminates unnecessary temporal variability and encourages smooth changes between projections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信