接触3流形的填充拓扑

B. Ozbagci
{"title":"接触3流形的填充拓扑","authors":"B. Ozbagci","doi":"10.2140/GTM.2015.19.73","DOIUrl":null,"url":null,"abstract":"Definition 1.2 An almost-complex structure on an even-dimensional manifold X is a complex structure on its tangent bundle TX , or equivalently a bundle map J W TX ! TX with J iJ D idTX . The pair .X;J / is called an almost complex manifold. It is called a complex manifold if the almost complex structure is integrable, meaning that J is induced via multiplication by i in any holomorphic coordinate chart.","PeriodicalId":115248,"journal":{"name":"Geometry and Topology Monographs","volume":"292 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"On the topology of fillings of contact 3-manifolds\",\"authors\":\"B. Ozbagci\",\"doi\":\"10.2140/GTM.2015.19.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Definition 1.2 An almost-complex structure on an even-dimensional manifold X is a complex structure on its tangent bundle TX , or equivalently a bundle map J W TX ! TX with J iJ D idTX . The pair .X;J / is called an almost complex manifold. It is called a complex manifold if the almost complex structure is integrable, meaning that J is induced via multiplication by i in any holomorphic coordinate chart.\",\"PeriodicalId\":115248,\"journal\":{\"name\":\"Geometry and Topology Monographs\",\"volume\":\"292 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry and Topology Monographs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/GTM.2015.19.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry and Topology Monographs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/GTM.2015.19.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

定义1.2在偶数维流形X上的一个几乎复杂的结构是它的切束TX上的一个复杂结构,或者等价于一个束映射jwtx !TX与jjdidtx。对。x;J /称为几乎复流形。如果几乎复杂的结构是可积的,则称为复流形,这意味着J可以通过在任何全纯坐标图中乘以i来导出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the topology of fillings of contact 3-manifolds
Definition 1.2 An almost-complex structure on an even-dimensional manifold X is a complex structure on its tangent bundle TX , or equivalently a bundle map J W TX ! TX with J iJ D idTX . The pair .X;J / is called an almost complex manifold. It is called a complex manifold if the almost complex structure is integrable, meaning that J is induced via multiplication by i in any holomorphic coordinate chart.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信