使用混合密度网络预测客户服务系统的等待时间分布

Majid Raeis, A. Tizghadam, A. Leon-Garcia
{"title":"使用混合密度网络预测客户服务系统的等待时间分布","authors":"Majid Raeis, A. Tizghadam, A. Leon-Garcia","doi":"10.23919/CNSM46954.2019.9012688","DOIUrl":null,"url":null,"abstract":"Motivated by interest in providing more efficient services in customer service systems, we use statistical learning methods and delay history information to predict the conditional distribution of the customers’ waiting times in queueing systems. From the predicted distributions, descriptive statistics of the system such as mean, variance and percentiles of the waiting times can be obtained, which can be used for delay announcements, SLA conformance and better system management. We model the distributions by mixtures of Gaussians, parameters of which can be estimated using Mixture Density Networks. We use the extensions of the Lindley’s equation for multi-server queues to generate our datasets. The evaluations show that exploiting more delay history information can result in much more accurate predictions under realistic time-varying arrival assumptions.","PeriodicalId":273818,"journal":{"name":"2019 15th International Conference on Network and Service Management (CNSM)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Predicting Distributions of Waiting Times in Customer Service Systems using Mixture Density Networks\",\"authors\":\"Majid Raeis, A. Tizghadam, A. Leon-Garcia\",\"doi\":\"10.23919/CNSM46954.2019.9012688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by interest in providing more efficient services in customer service systems, we use statistical learning methods and delay history information to predict the conditional distribution of the customers’ waiting times in queueing systems. From the predicted distributions, descriptive statistics of the system such as mean, variance and percentiles of the waiting times can be obtained, which can be used for delay announcements, SLA conformance and better system management. We model the distributions by mixtures of Gaussians, parameters of which can be estimated using Mixture Density Networks. We use the extensions of the Lindley’s equation for multi-server queues to generate our datasets. The evaluations show that exploiting more delay history information can result in much more accurate predictions under realistic time-varying arrival assumptions.\",\"PeriodicalId\":273818,\"journal\":{\"name\":\"2019 15th International Conference on Network and Service Management (CNSM)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th International Conference on Network and Service Management (CNSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CNSM46954.2019.9012688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM46954.2019.9012688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为了在客户服务系统中提供更高效的服务,我们使用统计学习方法和延迟历史信息来预测排队系统中客户等待时间的条件分布。从预测的分布中,可以得到系统的描述性统计数据,如等待时间的平均值、方差和百分位数,可以用于延迟通知、SLA一致性和更好的系统管理。我们通过混合高斯分布模型,其参数可以使用混合密度网络估计。我们使用多服务器队列的Lindley方程的扩展来生成我们的数据集。结果表明,在实际的时变到达假设条件下,利用更多的延迟历史信息可以得到更准确的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Distributions of Waiting Times in Customer Service Systems using Mixture Density Networks
Motivated by interest in providing more efficient services in customer service systems, we use statistical learning methods and delay history information to predict the conditional distribution of the customers’ waiting times in queueing systems. From the predicted distributions, descriptive statistics of the system such as mean, variance and percentiles of the waiting times can be obtained, which can be used for delay announcements, SLA conformance and better system management. We model the distributions by mixtures of Gaussians, parameters of which can be estimated using Mixture Density Networks. We use the extensions of the Lindley’s equation for multi-server queues to generate our datasets. The evaluations show that exploiting more delay history information can result in much more accurate predictions under realistic time-varying arrival assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信