采样独立集的Glauber动态的快速收敛

M. Luby, Eric Vigoda
{"title":"采样独立集的Glauber动态的快速收敛","authors":"M. Luby, Eric Vigoda","doi":"10.1002/(SICI)1098-2418(199910/12)15:3/4%3C229::AID-RSA3%3E3.0.CO;2-X","DOIUrl":null,"url":null,"abstract":"We consider the problem of sampling independent sets of a graph with maximum degree δ. The weight of each independent set is expressed in terms of a fixed positive parameter λ≤2/(δ−2), where the weight of an independent set σ is λ|σ|. The Glauber dynamics is a simple Markov chain Monte Carlo method for sampling from this distribution. We show fast convergence (in O(n log n) time) of this dynamics. This paper gives the more interesting proof for triangle-free graphs. The proof for arbitrary graphs is given in a companion paper (E. Vigoda, Technical Report TR-99-003, International Computer Institute, Berkeley, CA, 1998). We also prove complementary hardness of approximation results, which show that it is hard to sample from this distribution when λ>c/δ for a constant c≤0. ©1999 John Wiley & Sons, Inc. Random Struct. Alg., 15, 229–241, 1999","PeriodicalId":303496,"journal":{"name":"Random Struct. Algorithms","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":"{\"title\":\"Fast convergence of the Glauber dynamics for sampling independent sets\",\"authors\":\"M. Luby, Eric Vigoda\",\"doi\":\"10.1002/(SICI)1098-2418(199910/12)15:3/4%3C229::AID-RSA3%3E3.0.CO;2-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of sampling independent sets of a graph with maximum degree δ. The weight of each independent set is expressed in terms of a fixed positive parameter λ≤2/(δ−2), where the weight of an independent set σ is λ|σ|. The Glauber dynamics is a simple Markov chain Monte Carlo method for sampling from this distribution. We show fast convergence (in O(n log n) time) of this dynamics. This paper gives the more interesting proof for triangle-free graphs. The proof for arbitrary graphs is given in a companion paper (E. Vigoda, Technical Report TR-99-003, International Computer Institute, Berkeley, CA, 1998). We also prove complementary hardness of approximation results, which show that it is hard to sample from this distribution when λ>c/δ for a constant c≤0. ©1999 John Wiley & Sons, Inc. Random Struct. Alg., 15, 229–241, 1999\",\"PeriodicalId\":303496,\"journal\":{\"name\":\"Random Struct. Algorithms\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"104\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Struct. Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/(SICI)1098-2418(199910/12)15:3/4%3C229::AID-RSA3%3E3.0.CO;2-X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Struct. Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/(SICI)1098-2418(199910/12)15:3/4%3C229::AID-RSA3%3E3.0.CO;2-X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104

摘要

考虑最大度为δ的图的抽样独立集问题。每个独立集的权值用一个固定的正参数λ≤2/(δ−2)表示,其中独立集的权值σ为λ|σ|。格劳伯动力学是一种简单的马尔可夫链蒙特卡罗方法,用于从该分布中采样。我们展示了这种动态的快速收敛(在O(n log n)时间内)。本文给出了一个更有趣的无三角形图的证明。任意图的证明在一篇配套论文中给出(E. Vigoda, Technical Report TR-99-003, International Computer Institute, Berkeley, CA, 1998)。我们还证明了近似结果的互补硬度,这表明当常数c≤0时λ>c/δ很难从该分布中采样。©1999 John Wiley & Sons, Inc随机结构。Alg。科学通报,15,229-241,1999
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast convergence of the Glauber dynamics for sampling independent sets
We consider the problem of sampling independent sets of a graph with maximum degree δ. The weight of each independent set is expressed in terms of a fixed positive parameter λ≤2/(δ−2), where the weight of an independent set σ is λ|σ|. The Glauber dynamics is a simple Markov chain Monte Carlo method for sampling from this distribution. We show fast convergence (in O(n log n) time) of this dynamics. This paper gives the more interesting proof for triangle-free graphs. The proof for arbitrary graphs is given in a companion paper (E. Vigoda, Technical Report TR-99-003, International Computer Institute, Berkeley, CA, 1998). We also prove complementary hardness of approximation results, which show that it is hard to sample from this distribution when λ>c/δ for a constant c≤0. ©1999 John Wiley & Sons, Inc. Random Struct. Alg., 15, 229–241, 1999
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信