基于YOLOv3-tiny的牙锥束计算机断层检测牙槽骨

M. Widiasri, A. Arifin, N. Suciati, E. Astuti, R. Indraswari
{"title":"基于YOLOv3-tiny的牙锥束计算机断层检测牙槽骨","authors":"M. Widiasri, A. Arifin, N. Suciati, E. Astuti, R. Indraswari","doi":"10.1109/AIMS52415.2021.9466037","DOIUrl":null,"url":null,"abstract":"Cone Beam Computed Tomography (CBCT) is a medical imaging technique widely used in dentistry including dental implant planning. To determine the size of the dental implant, it is necessary to detect the alveolar bone at the implant site. In this study, we propose automatic detection of alveolar bone from CBCT images of teeth using the YOLOv3-tiny method. The YOLOv3-tiny network architecture consists of a seven-layer convolution networks and six max-pooling layers in the Darknet-53 network with two output branch scale predictions. CBCT images of teeth obtained from 4 patients consisted of 800 coronal slices of 2D grayscale images, containing 830 alveolar bone annotations. Before the training process, the ground truth image annotation was made in the form of a bounding box on the alveolar bone object. The detection results of the YOLOv3-tiny model were compared with the detection results of the YOLOv3 and YOLOv2-tiny models. The results of the experiment on 640 training images and 160 testing images showed that YOLOv3-tiny outperformed YOLOv2-tiny with mAP of 98.6% and 96.73%, respectively. Meanwhile, shows the same good result as YOLOv3.","PeriodicalId":299121,"journal":{"name":"2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Alveolar Bone Detection from Dental Cone Beam Computed Tomography using YOLOv3-tiny\",\"authors\":\"M. Widiasri, A. Arifin, N. Suciati, E. Astuti, R. Indraswari\",\"doi\":\"10.1109/AIMS52415.2021.9466037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cone Beam Computed Tomography (CBCT) is a medical imaging technique widely used in dentistry including dental implant planning. To determine the size of the dental implant, it is necessary to detect the alveolar bone at the implant site. In this study, we propose automatic detection of alveolar bone from CBCT images of teeth using the YOLOv3-tiny method. The YOLOv3-tiny network architecture consists of a seven-layer convolution networks and six max-pooling layers in the Darknet-53 network with two output branch scale predictions. CBCT images of teeth obtained from 4 patients consisted of 800 coronal slices of 2D grayscale images, containing 830 alveolar bone annotations. Before the training process, the ground truth image annotation was made in the form of a bounding box on the alveolar bone object. The detection results of the YOLOv3-tiny model were compared with the detection results of the YOLOv3 and YOLOv2-tiny models. The results of the experiment on 640 training images and 160 testing images showed that YOLOv3-tiny outperformed YOLOv2-tiny with mAP of 98.6% and 96.73%, respectively. Meanwhile, shows the same good result as YOLOv3.\",\"PeriodicalId\":299121,\"journal\":{\"name\":\"2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIMS52415.2021.9466037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIMS52415.2021.9466037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

锥形束计算机断层扫描(CBCT)是一种广泛应用于牙科和种植计划的医学成像技术。为了确定种植体的大小,有必要检测种植体部位的牙槽骨。在这项研究中,我们提出了使用YOLOv3-tiny方法从牙齿的CBCT图像中自动检测牙槽骨。YOLOv3-tiny网络架构由一个七层卷积网络和六个最大池化层组成,在Darknet-53网络中具有两个输出分支规模预测。4例患者的牙齿CBCT图像包括800个冠状面二维灰度图像,包含830个牙槽骨注释。在训练过程之前,在牙槽骨对象上以边界框的形式对ground truth图像进行标注。将YOLOv3-tiny模型的检测结果与YOLOv3和YOLOv2-tiny模型的检测结果进行比较。在640张训练图像和160张测试图像上的实验结果表明,YOLOv3-tiny的mAP值分别为98.6%和96.73%,优于YOLOv2-tiny。同时,显示出与YOLOv3相同的良好效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alveolar Bone Detection from Dental Cone Beam Computed Tomography using YOLOv3-tiny
Cone Beam Computed Tomography (CBCT) is a medical imaging technique widely used in dentistry including dental implant planning. To determine the size of the dental implant, it is necessary to detect the alveolar bone at the implant site. In this study, we propose automatic detection of alveolar bone from CBCT images of teeth using the YOLOv3-tiny method. The YOLOv3-tiny network architecture consists of a seven-layer convolution networks and six max-pooling layers in the Darknet-53 network with two output branch scale predictions. CBCT images of teeth obtained from 4 patients consisted of 800 coronal slices of 2D grayscale images, containing 830 alveolar bone annotations. Before the training process, the ground truth image annotation was made in the form of a bounding box on the alveolar bone object. The detection results of the YOLOv3-tiny model were compared with the detection results of the YOLOv3 and YOLOv2-tiny models. The results of the experiment on 640 training images and 160 testing images showed that YOLOv3-tiny outperformed YOLOv2-tiny with mAP of 98.6% and 96.73%, respectively. Meanwhile, shows the same good result as YOLOv3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信