D. B. Haddad, Leonardo O. Nunes, W. Martins, L. Biscainho, Bowon Lee
{"title":"鲁棒声传感器定位的封闭形式解决方案","authors":"D. B. Haddad, Leonardo O. Nunes, W. Martins, L. Biscainho, Bowon Lee","doi":"10.1109/WASPAA.2013.6701810","DOIUrl":null,"url":null,"abstract":"This paper deals with the localization of acoustic sensors based on signals emitted by loudspeakers at known positions. In particular, a model for distortions in time-of-flight (TOF) estimates applicable to the sensor localization problem is presented along with closed-form solutions with low computational cost. The proposed techniques are able to approximate the sensor position even when the TOFs are corrupted by an unknown delay, there is a sampling frequency mismatch between the A/D and D/A converters associated with sensor and loudspeakers, and the speed of sound is unknown. Simulations and an experiment on real data demonstrate that the proposed methods are able to estimate sensor positions with less than 2 cm of error in the evaluated scenarios.","PeriodicalId":341888,"journal":{"name":"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","volume":"202 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Closed-form solutions for robust acoustic sensor localization\",\"authors\":\"D. B. Haddad, Leonardo O. Nunes, W. Martins, L. Biscainho, Bowon Lee\",\"doi\":\"10.1109/WASPAA.2013.6701810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the localization of acoustic sensors based on signals emitted by loudspeakers at known positions. In particular, a model for distortions in time-of-flight (TOF) estimates applicable to the sensor localization problem is presented along with closed-form solutions with low computational cost. The proposed techniques are able to approximate the sensor position even when the TOFs are corrupted by an unknown delay, there is a sampling frequency mismatch between the A/D and D/A converters associated with sensor and loudspeakers, and the speed of sound is unknown. Simulations and an experiment on real data demonstrate that the proposed methods are able to estimate sensor positions with less than 2 cm of error in the evaluated scenarios.\",\"PeriodicalId\":341888,\"journal\":{\"name\":\"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics\",\"volume\":\"202 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WASPAA.2013.6701810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASPAA.2013.6701810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Closed-form solutions for robust acoustic sensor localization
This paper deals with the localization of acoustic sensors based on signals emitted by loudspeakers at known positions. In particular, a model for distortions in time-of-flight (TOF) estimates applicable to the sensor localization problem is presented along with closed-form solutions with low computational cost. The proposed techniques are able to approximate the sensor position even when the TOFs are corrupted by an unknown delay, there is a sampling frequency mismatch between the A/D and D/A converters associated with sensor and loudspeakers, and the speed of sound is unknown. Simulations and an experiment on real data demonstrate that the proposed methods are able to estimate sensor positions with less than 2 cm of error in the evaluated scenarios.