CyberGIS-compute使计算密集的地理空间研究成为可能

Anand Padmanabhan, Ximo Ziao, Rebecca Vandewalle, Furqan Baig, Alexander Michels, Zhiyu Li, Shaowen Wang
{"title":"CyberGIS-compute使计算密集的地理空间研究成为可能","authors":"Anand Padmanabhan, Ximo Ziao, Rebecca Vandewalle, Furqan Baig, Alexander Michels, Zhiyu Li, Shaowen Wang","doi":"10.1145/3486189.3490017","DOIUrl":null,"url":null,"abstract":"Geospatial research and education have become increasingly dependent on cyberGIS to tackle computation and data challenges. However, the use of advanced cyberinfrastructure resources for geospatial research and education is extremely challenging due to both high learning curve for users and high software development and integration costs for developers, due to limited availability of middleware tools available to make such resources easily accessible. This tutorial describes CyberGIS-Compute as a middleware framework that addresses these challenges and provides access to high-performance resources through simple easy to use interfaces. The CyberGIS-Compute framework provides an easy to use application interface and a Python SDK to provide access to CyberGIS capabilities, allowing geospatial applications to easily scale and employ advanced cyberinfrastructure resources. In this tutorial, we will first start with the basics of CyberGIS-Jupyter and CyberGIS-Compute, then introduce the Python SDK for CyberGIS-Compute with a simple Hello World example. Then, we will take multiple real-world geospatial applications use-cases like spatial accessibility and wildfire evacuation simulation using agent based modeling. We will also provide pointers on how to contribute applications to the CyberGIS-Compute framework.","PeriodicalId":258964,"journal":{"name":"Proceedings of the 3rd ACM SIGSPATIAL International Workshop on APIs and Libraries for Geospatial Data Science","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CyberGIS-compute for enabling computationally intensive geospatial research\",\"authors\":\"Anand Padmanabhan, Ximo Ziao, Rebecca Vandewalle, Furqan Baig, Alexander Michels, Zhiyu Li, Shaowen Wang\",\"doi\":\"10.1145/3486189.3490017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geospatial research and education have become increasingly dependent on cyberGIS to tackle computation and data challenges. However, the use of advanced cyberinfrastructure resources for geospatial research and education is extremely challenging due to both high learning curve for users and high software development and integration costs for developers, due to limited availability of middleware tools available to make such resources easily accessible. This tutorial describes CyberGIS-Compute as a middleware framework that addresses these challenges and provides access to high-performance resources through simple easy to use interfaces. The CyberGIS-Compute framework provides an easy to use application interface and a Python SDK to provide access to CyberGIS capabilities, allowing geospatial applications to easily scale and employ advanced cyberinfrastructure resources. In this tutorial, we will first start with the basics of CyberGIS-Jupyter and CyberGIS-Compute, then introduce the Python SDK for CyberGIS-Compute with a simple Hello World example. Then, we will take multiple real-world geospatial applications use-cases like spatial accessibility and wildfire evacuation simulation using agent based modeling. We will also provide pointers on how to contribute applications to the CyberGIS-Compute framework.\",\"PeriodicalId\":258964,\"journal\":{\"name\":\"Proceedings of the 3rd ACM SIGSPATIAL International Workshop on APIs and Libraries for Geospatial Data Science\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd ACM SIGSPATIAL International Workshop on APIs and Libraries for Geospatial Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3486189.3490017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd ACM SIGSPATIAL International Workshop on APIs and Libraries for Geospatial Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3486189.3490017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

地理空间研究和教育越来越依赖于网络地理信息系统来解决计算和数据方面的挑战。然而,将先进的网络基础设施资源用于地理空间研究和教育是极具挑战性的,因为用户的学习曲线很高,开发人员的软件开发和集成成本也很高,因为中间件工具的可用性有限,无法使这些资源易于访问。本教程将CyberGIS-Compute描述为解决这些挑战的中间件框架,并通过简单易用的接口提供对高性能资源的访问。CyberGIS- compute框架提供了一个易于使用的应用程序接口和Python SDK,以提供对CyberGIS功能的访问,允许地理空间应用程序轻松扩展和使用先进的网络基础设施资源。在本教程中,我们将首先从CyberGIS-Jupyter和CyberGIS-Compute的基础知识开始,然后通过一个简单的Hello World示例介绍用于CyberGIS-Compute的Python SDK。然后,我们将采用多个真实世界的地理空间应用用例,如空间可达性和使用基于代理的建模的野火疏散模拟。我们还将提供如何向CyberGIS-Compute框架贡献应用程序的指针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CyberGIS-compute for enabling computationally intensive geospatial research
Geospatial research and education have become increasingly dependent on cyberGIS to tackle computation and data challenges. However, the use of advanced cyberinfrastructure resources for geospatial research and education is extremely challenging due to both high learning curve for users and high software development and integration costs for developers, due to limited availability of middleware tools available to make such resources easily accessible. This tutorial describes CyberGIS-Compute as a middleware framework that addresses these challenges and provides access to high-performance resources through simple easy to use interfaces. The CyberGIS-Compute framework provides an easy to use application interface and a Python SDK to provide access to CyberGIS capabilities, allowing geospatial applications to easily scale and employ advanced cyberinfrastructure resources. In this tutorial, we will first start with the basics of CyberGIS-Jupyter and CyberGIS-Compute, then introduce the Python SDK for CyberGIS-Compute with a simple Hello World example. Then, we will take multiple real-world geospatial applications use-cases like spatial accessibility and wildfire evacuation simulation using agent based modeling. We will also provide pointers on how to contribute applications to the CyberGIS-Compute framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信