Tze Meng Low, Daniele G. Spampinato, Scott McMillan, Michel Pelletier
{"title":"Python中的线性代数Louvain方法","authors":"Tze Meng Low, Daniele G. Spampinato, Scott McMillan, Michel Pelletier","doi":"10.1109/IPDPSW50202.2020.00050","DOIUrl":null,"url":null,"abstract":"We show that a linear algebraic formulation of the Louvain method for community detection can be derived systematically from the linear algebraic definition of modularity. Using the pygraphblas interface, a high-level Python wrapper for the GraphBLAS C Application Programming Interface (API), we demonstrate that the linear algebraic formulation of the Louvain method can be rapidly implemented.","PeriodicalId":398819,"journal":{"name":"2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Linear Algebraic Louvain Method in Python\",\"authors\":\"Tze Meng Low, Daniele G. Spampinato, Scott McMillan, Michel Pelletier\",\"doi\":\"10.1109/IPDPSW50202.2020.00050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that a linear algebraic formulation of the Louvain method for community detection can be derived systematically from the linear algebraic definition of modularity. Using the pygraphblas interface, a high-level Python wrapper for the GraphBLAS C Application Programming Interface (API), we demonstrate that the linear algebraic formulation of the Louvain method can be rapidly implemented.\",\"PeriodicalId\":398819,\"journal\":{\"name\":\"2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW50202.2020.00050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW50202.2020.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that a linear algebraic formulation of the Louvain method for community detection can be derived systematically from the linear algebraic definition of modularity. Using the pygraphblas interface, a high-level Python wrapper for the GraphBLAS C Application Programming Interface (API), we demonstrate that the linear algebraic formulation of the Louvain method can be rapidly implemented.