从示范中学习的喂养任务的实施

N. Ettehadi, A. Behal
{"title":"从示范中学习的喂养任务的实施","authors":"N. Ettehadi, A. Behal","doi":"10.1109/IRC.2018.00058","DOIUrl":null,"url":null,"abstract":"In this paper, a Learning From Demonstration (LFD) approach is used to design an autonomous meal-assistant agent. The feeding task is modeled as a mixture of Gaussian distributions. Using the data collected via kinesthetic teaching, the parameters of Gaussian Mixture Model (GMM) are learned using Gaussian Mixture Regression (GMR) and Expectation Maximization (EM) algorithm. Reproduction of feeding trajectories for different environments is obtained by solving a constrained optimization problem. In this method we show that obstacles can be avoided by robot's end-effector by adding a set of extra constraints to the optimization problem. Finally, the performance of the designed meal assistant is evaluated in two feeding scenario experiments: one considering obstacles in the path between the bowl and the mouth and the other without.","PeriodicalId":416113,"journal":{"name":"2018 Second IEEE International Conference on Robotic Computing (IRC)","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Implementation of Feeding Task via Learning from Demonstration\",\"authors\":\"N. Ettehadi, A. Behal\",\"doi\":\"10.1109/IRC.2018.00058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a Learning From Demonstration (LFD) approach is used to design an autonomous meal-assistant agent. The feeding task is modeled as a mixture of Gaussian distributions. Using the data collected via kinesthetic teaching, the parameters of Gaussian Mixture Model (GMM) are learned using Gaussian Mixture Regression (GMR) and Expectation Maximization (EM) algorithm. Reproduction of feeding trajectories for different environments is obtained by solving a constrained optimization problem. In this method we show that obstacles can be avoided by robot's end-effector by adding a set of extra constraints to the optimization problem. Finally, the performance of the designed meal assistant is evaluated in two feeding scenario experiments: one considering obstacles in the path between the bowl and the mouth and the other without.\",\"PeriodicalId\":416113,\"journal\":{\"name\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC.2018.00058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC.2018.00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文采用从演示中学习(LFD)的方法来设计一个自主的助餐代理。投料任务是一个混合高斯分布模型。利用动觉教学收集的数据,利用高斯混合回归(GMR)和期望最大化(EM)算法学习高斯混合模型(GMM)的参数。通过求解约束优化问题,得到了不同环境下投料轨迹的再现。在此方法中,我们通过在优化问题中加入一组额外的约束来证明机器人末端执行器可以避开障碍物。最后,通过两种喂食场景实验对所设计的助餐器的性能进行了评估:一种是考虑碗与口之间路径上的障碍物,另一种是不考虑障碍物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of Feeding Task via Learning from Demonstration
In this paper, a Learning From Demonstration (LFD) approach is used to design an autonomous meal-assistant agent. The feeding task is modeled as a mixture of Gaussian distributions. Using the data collected via kinesthetic teaching, the parameters of Gaussian Mixture Model (GMM) are learned using Gaussian Mixture Regression (GMR) and Expectation Maximization (EM) algorithm. Reproduction of feeding trajectories for different environments is obtained by solving a constrained optimization problem. In this method we show that obstacles can be avoided by robot's end-effector by adding a set of extra constraints to the optimization problem. Finally, the performance of the designed meal assistant is evaluated in two feeding scenario experiments: one considering obstacles in the path between the bowl and the mouth and the other without.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信