{"title":"从示范中学习的喂养任务的实施","authors":"N. Ettehadi, A. Behal","doi":"10.1109/IRC.2018.00058","DOIUrl":null,"url":null,"abstract":"In this paper, a Learning From Demonstration (LFD) approach is used to design an autonomous meal-assistant agent. The feeding task is modeled as a mixture of Gaussian distributions. Using the data collected via kinesthetic teaching, the parameters of Gaussian Mixture Model (GMM) are learned using Gaussian Mixture Regression (GMR) and Expectation Maximization (EM) algorithm. Reproduction of feeding trajectories for different environments is obtained by solving a constrained optimization problem. In this method we show that obstacles can be avoided by robot's end-effector by adding a set of extra constraints to the optimization problem. Finally, the performance of the designed meal assistant is evaluated in two feeding scenario experiments: one considering obstacles in the path between the bowl and the mouth and the other without.","PeriodicalId":416113,"journal":{"name":"2018 Second IEEE International Conference on Robotic Computing (IRC)","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Implementation of Feeding Task via Learning from Demonstration\",\"authors\":\"N. Ettehadi, A. Behal\",\"doi\":\"10.1109/IRC.2018.00058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a Learning From Demonstration (LFD) approach is used to design an autonomous meal-assistant agent. The feeding task is modeled as a mixture of Gaussian distributions. Using the data collected via kinesthetic teaching, the parameters of Gaussian Mixture Model (GMM) are learned using Gaussian Mixture Regression (GMR) and Expectation Maximization (EM) algorithm. Reproduction of feeding trajectories for different environments is obtained by solving a constrained optimization problem. In this method we show that obstacles can be avoided by robot's end-effector by adding a set of extra constraints to the optimization problem. Finally, the performance of the designed meal assistant is evaluated in two feeding scenario experiments: one considering obstacles in the path between the bowl and the mouth and the other without.\",\"PeriodicalId\":416113,\"journal\":{\"name\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC.2018.00058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC.2018.00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementation of Feeding Task via Learning from Demonstration
In this paper, a Learning From Demonstration (LFD) approach is used to design an autonomous meal-assistant agent. The feeding task is modeled as a mixture of Gaussian distributions. Using the data collected via kinesthetic teaching, the parameters of Gaussian Mixture Model (GMM) are learned using Gaussian Mixture Regression (GMR) and Expectation Maximization (EM) algorithm. Reproduction of feeding trajectories for different environments is obtained by solving a constrained optimization problem. In this method we show that obstacles can be avoided by robot's end-effector by adding a set of extra constraints to the optimization problem. Finally, the performance of the designed meal assistant is evaluated in two feeding scenario experiments: one considering obstacles in the path between the bowl and the mouth and the other without.