一种新的弱标注半监督检测方法

Eric K. Tokuda, Gabriel B. A. Ferreira, Cláudio T. Silva, R. M. C. Junior
{"title":"一种新的弱标注半监督检测方法","authors":"Eric K. Tokuda, Gabriel B. A. Ferreira, Cláudio T. Silva, R. M. C. Junior","doi":"10.1109/SSIAI.2018.8470307","DOIUrl":null,"url":null,"abstract":"In this work we propose a semi-supervised learning approach for object detection where we use detections from a preexisting detector to train a new detector. We differ from previous works by coming up with a relative quality metric which involves simpler labeling and by proposing a full framework of automatic generation of improved detectors. To validate our method, we collected a comprehensive dataset of more than two thousand hours of streaming from public traffic cameras that contemplates variations in time, location and weather. We used these data to generate and assess with weak labeling a car detector that outperforms popular detectors on hard situations such as rainy weather and low resolution images. Experimental results are reported, thus corroborating the relevance of the proposed approach.","PeriodicalId":422209,"journal":{"name":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A NOVEL SEMI-SUPERVISED DETECTION APPROACH WITH WEAK ANNOTATION\",\"authors\":\"Eric K. Tokuda, Gabriel B. A. Ferreira, Cláudio T. Silva, R. M. C. Junior\",\"doi\":\"10.1109/SSIAI.2018.8470307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we propose a semi-supervised learning approach for object detection where we use detections from a preexisting detector to train a new detector. We differ from previous works by coming up with a relative quality metric which involves simpler labeling and by proposing a full framework of automatic generation of improved detectors. To validate our method, we collected a comprehensive dataset of more than two thousand hours of streaming from public traffic cameras that contemplates variations in time, location and weather. We used these data to generate and assess with weak labeling a car detector that outperforms popular detectors on hard situations such as rainy weather and low resolution images. Experimental results are reported, thus corroborating the relevance of the proposed approach.\",\"PeriodicalId\":422209,\"journal\":{\"name\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSIAI.2018.8470307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSIAI.2018.8470307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在这项工作中,我们提出了一种用于对象检测的半监督学习方法,其中我们使用来自先前存在的检测器的检测来训练新的检测器。我们与以前的工作不同,提出了一个相对的质量度量,它涉及更简单的标记,并提出了一个自动生成改进检测器的完整框架。为了验证我们的方法,我们收集了一个综合的数据集,其中包括2000多小时的公共交通摄像头流媒体,考虑了时间、地点和天气的变化。我们使用这些数据生成并使用弱标记来评估汽车检测器,该检测器在诸如雨天和低分辨率图像等恶劣情况下优于流行检测器。实验结果的报告,从而证实了所提出的方法的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A NOVEL SEMI-SUPERVISED DETECTION APPROACH WITH WEAK ANNOTATION
In this work we propose a semi-supervised learning approach for object detection where we use detections from a preexisting detector to train a new detector. We differ from previous works by coming up with a relative quality metric which involves simpler labeling and by proposing a full framework of automatic generation of improved detectors. To validate our method, we collected a comprehensive dataset of more than two thousand hours of streaming from public traffic cameras that contemplates variations in time, location and weather. We used these data to generate and assess with weak labeling a car detector that outperforms popular detectors on hard situations such as rainy weather and low resolution images. Experimental results are reported, thus corroborating the relevance of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信