{"title":"使用MRI图像预测脑肿瘤患者总体生存的机器学习和深度学习技术","authors":"Lina Chato, S. Latifi","doi":"10.1109/BIBE.2017.00-86","DOIUrl":null,"url":null,"abstract":"This paper presents a method to automatically predict the survival rate of patients with a glioma brain tumor by classifying the patients MRI image using machine learning (ML) methods. The dataset used in this study is BraTS 2017, which provides 163 samples; each sample has four sequences of MRI brain images, the overall survival time in days, and the patients age. The dataset is labeled into three classes of survivors: short-term, mid-term, and long-term. To improve the prediction results, various types of features were extracted and trained by various ML methods. Features considered included volumetric, statistical and intensity texture, histograms and deep features; ML techniques employed included support vector machine (SVM), k-nearest neighbors (KNN), linear discriminant, tree, ensemble and logistic regression. The best prediction accuracy based on classification is achieved by using deep learning features extracted by a pre-trained convolutional neural network (CNN) and was trained by a linear discriminant.","PeriodicalId":262603,"journal":{"name":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Machine Learning and Deep Learning Techniques to Predict Overall Survival of Brain Tumor Patients using MRI Images\",\"authors\":\"Lina Chato, S. Latifi\",\"doi\":\"10.1109/BIBE.2017.00-86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method to automatically predict the survival rate of patients with a glioma brain tumor by classifying the patients MRI image using machine learning (ML) methods. The dataset used in this study is BraTS 2017, which provides 163 samples; each sample has four sequences of MRI brain images, the overall survival time in days, and the patients age. The dataset is labeled into three classes of survivors: short-term, mid-term, and long-term. To improve the prediction results, various types of features were extracted and trained by various ML methods. Features considered included volumetric, statistical and intensity texture, histograms and deep features; ML techniques employed included support vector machine (SVM), k-nearest neighbors (KNN), linear discriminant, tree, ensemble and logistic regression. The best prediction accuracy based on classification is achieved by using deep learning features extracted by a pre-trained convolutional neural network (CNN) and was trained by a linear discriminant.\",\"PeriodicalId\":262603,\"journal\":{\"name\":\"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2017.00-86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2017.00-86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning and Deep Learning Techniques to Predict Overall Survival of Brain Tumor Patients using MRI Images
This paper presents a method to automatically predict the survival rate of patients with a glioma brain tumor by classifying the patients MRI image using machine learning (ML) methods. The dataset used in this study is BraTS 2017, which provides 163 samples; each sample has four sequences of MRI brain images, the overall survival time in days, and the patients age. The dataset is labeled into three classes of survivors: short-term, mid-term, and long-term. To improve the prediction results, various types of features were extracted and trained by various ML methods. Features considered included volumetric, statistical and intensity texture, histograms and deep features; ML techniques employed included support vector machine (SVM), k-nearest neighbors (KNN), linear discriminant, tree, ensemble and logistic regression. The best prediction accuracy based on classification is achieved by using deep learning features extracted by a pre-trained convolutional neural network (CNN) and was trained by a linear discriminant.