基于单类的麻醉过程异常情况检测智能分类器

Alberto Allegue Leira, Esteban Jove, J. M. González-Cava, J. Casteleiro-Roca, Héctor Quintián-Pardo, Francisco Zayas-Gato, Santiago Torres Álvarez, S. Simic, J. A. M. Pérez, J. Calvo-Rolle
{"title":"基于单类的麻醉过程异常情况检测智能分类器","authors":"Alberto Allegue Leira, Esteban Jove, J. M. González-Cava, J. Casteleiro-Roca, Héctor Quintián-Pardo, Francisco Zayas-Gato, Santiago Torres Álvarez, S. Simic, J. A. M. Pérez, J. Calvo-Rolle","doi":"10.1093/jigpal/jzaa065","DOIUrl":null,"url":null,"abstract":"\n Closed-loop administration of propofol for the control of hypnosis in anesthesia has evidenced an outperformance when comparing it with manual administration in terms of drug consumption and post-operative recovery of patients. Unlike other systems, the success of this strategy lies on the availability of a feedback variable capable of quantifying the current hypnotic state of the patient. However, the appearance of anomalies during the anesthetic process may result in inaccurate actions of the automatic controller. These anomalies may come from the monitors, the syringe pumps, the actions of the surgeon or even from alterations in patients. This could produce adverse side effects that can affect the patient postoperative and reduce the safety of the patient in the operating room. Then, the use of anomaly detection techniques plays a significant role to avoid this undesirable situations. This work assesses different one-class intelligent techniques to detect anomalies in patients undergoing general anesthesia. Due to the difficulty of obtaining real data from anomaly situations, artificial outliers are generated to check the performance of each classifier. The final model presents successful performance.","PeriodicalId":304915,"journal":{"name":"Log. J. IGPL","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"One-Class-Based Intelligent Classifier for Detecting Anomalous Situations During the Anesthetic Process\",\"authors\":\"Alberto Allegue Leira, Esteban Jove, J. M. González-Cava, J. Casteleiro-Roca, Héctor Quintián-Pardo, Francisco Zayas-Gato, Santiago Torres Álvarez, S. Simic, J. A. M. Pérez, J. Calvo-Rolle\",\"doi\":\"10.1093/jigpal/jzaa065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Closed-loop administration of propofol for the control of hypnosis in anesthesia has evidenced an outperformance when comparing it with manual administration in terms of drug consumption and post-operative recovery of patients. Unlike other systems, the success of this strategy lies on the availability of a feedback variable capable of quantifying the current hypnotic state of the patient. However, the appearance of anomalies during the anesthetic process may result in inaccurate actions of the automatic controller. These anomalies may come from the monitors, the syringe pumps, the actions of the surgeon or even from alterations in patients. This could produce adverse side effects that can affect the patient postoperative and reduce the safety of the patient in the operating room. Then, the use of anomaly detection techniques plays a significant role to avoid this undesirable situations. This work assesses different one-class intelligent techniques to detect anomalies in patients undergoing general anesthesia. Due to the difficulty of obtaining real data from anomaly situations, artificial outliers are generated to check the performance of each classifier. The final model presents successful performance.\",\"PeriodicalId\":304915,\"journal\":{\"name\":\"Log. J. IGPL\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. J. IGPL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzaa065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. J. IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jigpal/jzaa065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在麻醉状态下,闭环给药异丙酚控制催眠在药物消耗和患者术后恢复方面优于手动给药。与其他系统不同,该策略的成功取决于能够量化患者当前催眠状态的反馈变量的可用性。然而,在麻醉过程中出现的异常可能导致自动控制器的不准确动作。这些异常可能来自监测器、注射泵、外科医生的动作,甚至来自患者的变化。这可能会产生不良的副作用,影响患者术后,降低患者在手术室的安全性。因此,异常检测技术的使用对避免这种不良情况起着重要的作用。这项工作评估了不同的一类智能技术,以检测异常的病人接受全身麻醉。由于难以从异常情况中获得真实数据,因此生成人工离群值来检查每个分类器的性能。最后的模型显示了成功的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One-Class-Based Intelligent Classifier for Detecting Anomalous Situations During the Anesthetic Process
Closed-loop administration of propofol for the control of hypnosis in anesthesia has evidenced an outperformance when comparing it with manual administration in terms of drug consumption and post-operative recovery of patients. Unlike other systems, the success of this strategy lies on the availability of a feedback variable capable of quantifying the current hypnotic state of the patient. However, the appearance of anomalies during the anesthetic process may result in inaccurate actions of the automatic controller. These anomalies may come from the monitors, the syringe pumps, the actions of the surgeon or even from alterations in patients. This could produce adverse side effects that can affect the patient postoperative and reduce the safety of the patient in the operating room. Then, the use of anomaly detection techniques plays a significant role to avoid this undesirable situations. This work assesses different one-class intelligent techniques to detect anomalies in patients undergoing general anesthesia. Due to the difficulty of obtaining real data from anomaly situations, artificial outliers are generated to check the performance of each classifier. The final model presents successful performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信