T. Hickmann, T. Adámek, O. Zielinski, Thorsten Derieth
{"title":"氧化还原液流电池的关键部件:双极板和衬垫-不同的材料和加工方法","authors":"T. Hickmann, T. Adámek, O. Zielinski, Thorsten Derieth","doi":"10.5772/INTECHOPEN.94863","DOIUrl":null,"url":null,"abstract":"Graphite filled thermoplastic based composites are an adequate material for bipolar plates in redox flow battery applications. Unlike metals, composite plates can provide excellent resistance to the highly aggressive chemical environment at elevated temperatures in combination with an electrochemical potential in battery operation. The chapter therefore gives an overview of the most important requirements for the graphite-plastic composite material and thus also for the bipolar plates, as well as the different characterization methods of the bipolar plates. In the following, both the modern composite materials based on polypropylene (PP) and polyvinylidene fluoride (PVDF) and their general properties are described with a focus on improved long-term stability. Furthermore, recycling is also considered. One section is dedicated to seals, which - as so often - are an underestimated component of redox flow batteries. In this gasket part of the chapter, the most common materials and interactions between gaskets and other stack components are presented, as well as the material properties, characterization and processing methods of the gaskets.","PeriodicalId":333652,"journal":{"name":"Energy Storage Battery Systems - Fundamentals and Applications [Working Title]","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Key Components in the Redox-Flow Battery: Bipolar Plates and Gaskets – Different Materials and Processing Methods for Their Usage\",\"authors\":\"T. Hickmann, T. Adámek, O. Zielinski, Thorsten Derieth\",\"doi\":\"10.5772/INTECHOPEN.94863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphite filled thermoplastic based composites are an adequate material for bipolar plates in redox flow battery applications. Unlike metals, composite plates can provide excellent resistance to the highly aggressive chemical environment at elevated temperatures in combination with an electrochemical potential in battery operation. The chapter therefore gives an overview of the most important requirements for the graphite-plastic composite material and thus also for the bipolar plates, as well as the different characterization methods of the bipolar plates. In the following, both the modern composite materials based on polypropylene (PP) and polyvinylidene fluoride (PVDF) and their general properties are described with a focus on improved long-term stability. Furthermore, recycling is also considered. One section is dedicated to seals, which - as so often - are an underestimated component of redox flow batteries. In this gasket part of the chapter, the most common materials and interactions between gaskets and other stack components are presented, as well as the material properties, characterization and processing methods of the gaskets.\",\"PeriodicalId\":333652,\"journal\":{\"name\":\"Energy Storage Battery Systems - Fundamentals and Applications [Working Title]\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Battery Systems - Fundamentals and Applications [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.94863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Battery Systems - Fundamentals and Applications [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.94863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Key Components in the Redox-Flow Battery: Bipolar Plates and Gaskets – Different Materials and Processing Methods for Their Usage
Graphite filled thermoplastic based composites are an adequate material for bipolar plates in redox flow battery applications. Unlike metals, composite plates can provide excellent resistance to the highly aggressive chemical environment at elevated temperatures in combination with an electrochemical potential in battery operation. The chapter therefore gives an overview of the most important requirements for the graphite-plastic composite material and thus also for the bipolar plates, as well as the different characterization methods of the bipolar plates. In the following, both the modern composite materials based on polypropylene (PP) and polyvinylidene fluoride (PVDF) and their general properties are described with a focus on improved long-term stability. Furthermore, recycling is also considered. One section is dedicated to seals, which - as so often - are an underestimated component of redox flow batteries. In this gasket part of the chapter, the most common materials and interactions between gaskets and other stack components are presented, as well as the material properties, characterization and processing methods of the gaskets.