组合拍卖中赢家确定的蚁群算法

Rongwei Gan, Qingshun Guo, Huiyou Chang, Yang Yi
{"title":"组合拍卖中赢家确定的蚁群算法","authors":"Rongwei Gan, Qingshun Guo, Huiyou Chang, Yang Yi","doi":"10.1109/ICNC.2007.242","DOIUrl":null,"url":null,"abstract":"Determining the winners of combinatorial auctions which maximize the profit of the auctioneer is NP-complete problem. This paper presents an efficient approximate searching algorithm IAA for the problem. The new algorithm uses the ant colony optimization algorithm based on heuristic rules, the proposed algorithm not only give the way for identify feasible bids with a given partial solution but also avoid the unnecessary trials that will not lead to an optimal solution. We have implemented IAA with Visual C++6.0, experiment results show IAA has good performance. When the average error of IAA is less than 2%, the running time of IAA is less than half of Edo Zurel and Noam Nisan's ALPH algorithm in random and weighted random distributions. Meanwhile IAA can get excellent solution for problem with over 3000 items and 50000 bids.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Ant Colony Optimization for Winner Determination in Combinatorial Auctions\",\"authors\":\"Rongwei Gan, Qingshun Guo, Huiyou Chang, Yang Yi\",\"doi\":\"10.1109/ICNC.2007.242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining the winners of combinatorial auctions which maximize the profit of the auctioneer is NP-complete problem. This paper presents an efficient approximate searching algorithm IAA for the problem. The new algorithm uses the ant colony optimization algorithm based on heuristic rules, the proposed algorithm not only give the way for identify feasible bids with a given partial solution but also avoid the unnecessary trials that will not lead to an optimal solution. We have implemented IAA with Visual C++6.0, experiment results show IAA has good performance. When the average error of IAA is less than 2%, the running time of IAA is less than half of Edo Zurel and Noam Nisan's ALPH algorithm in random and weighted random distributions. Meanwhile IAA can get excellent solution for problem with over 3000 items and 50000 bids.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

确定能使拍卖人利润最大化的组合拍卖中标者是np完全问题。本文提出了一种高效的近似搜索算法IAA。该算法采用基于启发式规则的蚁群优化算法,在给定部分解的情况下,给出了确定可行出价的方法,同时避免了不必要的试验,避免了无法得到最优解。我们用Visual c++ 6.0实现了IAA,实验结果表明IAA具有良好的性能。当IAA的平均误差小于2%时,在随机分布和加权随机分布下,IAA的运行时间不到Edo Zurel和Noam Nisan的ALPH算法的一半。同时,IAA可以通过3000多个项目和50000个投标获得优秀的问题解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ant Colony Optimization for Winner Determination in Combinatorial Auctions
Determining the winners of combinatorial auctions which maximize the profit of the auctioneer is NP-complete problem. This paper presents an efficient approximate searching algorithm IAA for the problem. The new algorithm uses the ant colony optimization algorithm based on heuristic rules, the proposed algorithm not only give the way for identify feasible bids with a given partial solution but also avoid the unnecessary trials that will not lead to an optimal solution. We have implemented IAA with Visual C++6.0, experiment results show IAA has good performance. When the average error of IAA is less than 2%, the running time of IAA is less than half of Edo Zurel and Noam Nisan's ALPH algorithm in random and weighted random distributions. Meanwhile IAA can get excellent solution for problem with over 3000 items and 50000 bids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信