tnt污染地下水的植物处理

R. Rivera, V. Medina, S. Larson, S. McCutcheon
{"title":"tnt污染地下水的植物处理","authors":"R. Rivera, V. Medina, S. Larson, S. McCutcheon","doi":"10.1080/10588339891334375","DOIUrl":null,"url":null,"abstract":"Phytoremediation is a viable technique for treating nitroaromatic compounds, particularly munitions. Continuous flow phyto-reactor studies were conducted at the following three influent concentrations of 2,4,6-trinitrotoluene (TNT): 1, 5, and 10 ppm. A control was also prepared with an influent TNT concentration of 5 ppm. Flow rates were systematically reduced to increase hydraulic retention times (HRT) which ranged from 12 to 76 days. Initially, the control reactor removed TNT as efficiently as the plant reactors. With time, however, the efficiency of the control became less than that of the plant reactors, suggesting that adsorption was initially the mechanism for removal. Up to 100% of the TNT was removed. Aminodinitrotoluene (ADNT) effluent concentration was higher for higher TNT influent concentrations. Increasing the retention time reduced ADNT concentration in the effluent. Supplementary batch studies confirmed that ADNT and diaminonitrotoluene (DANT) were phytodegraded. Preliminary batch studies w...","PeriodicalId":433778,"journal":{"name":"Journal of Soil Contamination","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Phytotreatment of TNT-Contaminated Groundwater\",\"authors\":\"R. Rivera, V. Medina, S. Larson, S. McCutcheon\",\"doi\":\"10.1080/10588339891334375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phytoremediation is a viable technique for treating nitroaromatic compounds, particularly munitions. Continuous flow phyto-reactor studies were conducted at the following three influent concentrations of 2,4,6-trinitrotoluene (TNT): 1, 5, and 10 ppm. A control was also prepared with an influent TNT concentration of 5 ppm. Flow rates were systematically reduced to increase hydraulic retention times (HRT) which ranged from 12 to 76 days. Initially, the control reactor removed TNT as efficiently as the plant reactors. With time, however, the efficiency of the control became less than that of the plant reactors, suggesting that adsorption was initially the mechanism for removal. Up to 100% of the TNT was removed. Aminodinitrotoluene (ADNT) effluent concentration was higher for higher TNT influent concentrations. Increasing the retention time reduced ADNT concentration in the effluent. Supplementary batch studies confirmed that ADNT and diaminonitrotoluene (DANT) were phytodegraded. Preliminary batch studies w...\",\"PeriodicalId\":433778,\"journal\":{\"name\":\"Journal of Soil Contamination\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soil Contamination\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10588339891334375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil Contamination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10588339891334375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

植物修复是处理硝基芳香族化合物特别是军需品的一种可行技术。连续流动植物反应器研究在以下三种输入浓度的2、4、6-三硝基甲苯(TNT)下进行:1、5和10 ppm。还制备了输入TNT浓度为5ppm的对照物。系统地降低流量以增加水力滞留时间(HRT),其范围从12天到76天不等。最初,控制反应堆与核电站反应堆一样有效地去除了TNT。然而,随着时间的推移,控制的效率变得低于工厂反应器的效率,这表明吸附最初是去除的机制。高达100%的TNT被清除。TNT浓度越高,氨二硝基甲苯(ADNT)出水浓度越高。延长停留时间可降低出水中ADNT的浓度。补充批量研究证实ADNT和二氨基硝基甲苯(DANT)被植物降解。初步批量研究…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phytotreatment of TNT-Contaminated Groundwater
Phytoremediation is a viable technique for treating nitroaromatic compounds, particularly munitions. Continuous flow phyto-reactor studies were conducted at the following three influent concentrations of 2,4,6-trinitrotoluene (TNT): 1, 5, and 10 ppm. A control was also prepared with an influent TNT concentration of 5 ppm. Flow rates were systematically reduced to increase hydraulic retention times (HRT) which ranged from 12 to 76 days. Initially, the control reactor removed TNT as efficiently as the plant reactors. With time, however, the efficiency of the control became less than that of the plant reactors, suggesting that adsorption was initially the mechanism for removal. Up to 100% of the TNT was removed. Aminodinitrotoluene (ADNT) effluent concentration was higher for higher TNT influent concentrations. Increasing the retention time reduced ADNT concentration in the effluent. Supplementary batch studies confirmed that ADNT and diaminonitrotoluene (DANT) were phytodegraded. Preliminary batch studies w...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信