克服不规则稀疏矩阵的负载不平衡

Goran Flegar, H. Anzt
{"title":"克服不规则稀疏矩阵的负载不平衡","authors":"Goran Flegar, H. Anzt","doi":"10.1145/3149704.3149767","DOIUrl":null,"url":null,"abstract":"In this paper we propose a load-balanced GPU kernel for computing the sparse matrix vector (SpMV) product. Making heavy use of the latest GPU programming features, we also enable satisfying performance for irregular and unbalanced matrices. In a performance comparison using 400 test matrices we reveal the new kernel being superior to the most popular SpMV implementations.","PeriodicalId":292798,"journal":{"name":"Proceedings of the Seventh Workshop on Irregular Applications: Architectures and Algorithms","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Overcoming Load Imbalance for Irregular Sparse Matrices\",\"authors\":\"Goran Flegar, H. Anzt\",\"doi\":\"10.1145/3149704.3149767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a load-balanced GPU kernel for computing the sparse matrix vector (SpMV) product. Making heavy use of the latest GPU programming features, we also enable satisfying performance for irregular and unbalanced matrices. In a performance comparison using 400 test matrices we reveal the new kernel being superior to the most popular SpMV implementations.\",\"PeriodicalId\":292798,\"journal\":{\"name\":\"Proceedings of the Seventh Workshop on Irregular Applications: Architectures and Algorithms\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh Workshop on Irregular Applications: Architectures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3149704.3149767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh Workshop on Irregular Applications: Architectures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3149704.3149767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文提出了一种计算稀疏矩阵向量积的负载均衡GPU内核。通过大量使用最新的GPU编程功能,我们还为不规则和不平衡矩阵提供了令人满意的性能。在使用400个测试矩阵的性能比较中,我们发现新内核优于最流行的SpMV实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overcoming Load Imbalance for Irregular Sparse Matrices
In this paper we propose a load-balanced GPU kernel for computing the sparse matrix vector (SpMV) product. Making heavy use of the latest GPU programming features, we also enable satisfying performance for irregular and unbalanced matrices. In a performance comparison using 400 test matrices we reveal the new kernel being superior to the most popular SpMV implementations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信