利用微通道提高气流换热系数的实验与数值研究

Jalal M. Jalil, G. A. Aziz, Amjed A. Kadhim
{"title":"利用微通道提高气流换热系数的实验与数值研究","authors":"Jalal M. Jalil, G. A. Aziz, Amjed A. Kadhim","doi":"10.29196/JUBES.V26I7.1492","DOIUrl":null,"url":null,"abstract":"Experimental and numerical study of fluid flow and heat transfer in microchannel airflow is investigated. The study covers changing the cooling of micro-channel for the velocities and heater powers. The dimensions of the microchannel were, length = 0.1m, width = 0.001m, height = 0.0005 m. The experimental and numerical results were compared with the previous paper for velocities up to 20 m/s and heater powers up to 5 W and the comparison was acceptable. In this paper, the results were extended numerically for velocities up to 60 m/s. The numerical solution used finite volume (SIMPLE algorithm) to solve Navier Stokes equations (continuity, momentum and energy). The results show that the heat transfer coefficient increases up to 220 W/m2 oC for velocity 60 m/s.","PeriodicalId":311103,"journal":{"name":"Journal of University of Babylon for Engineering Sciences","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Numerical Study to Enhance of Heat Transfer Coefficient in Air Flow Using Microchannel\",\"authors\":\"Jalal M. Jalil, G. A. Aziz, Amjed A. Kadhim\",\"doi\":\"10.29196/JUBES.V26I7.1492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experimental and numerical study of fluid flow and heat transfer in microchannel airflow is investigated. The study covers changing the cooling of micro-channel for the velocities and heater powers. The dimensions of the microchannel were, length = 0.1m, width = 0.001m, height = 0.0005 m. The experimental and numerical results were compared with the previous paper for velocities up to 20 m/s and heater powers up to 5 W and the comparison was acceptable. In this paper, the results were extended numerically for velocities up to 60 m/s. The numerical solution used finite volume (SIMPLE algorithm) to solve Navier Stokes equations (continuity, momentum and energy). The results show that the heat transfer coefficient increases up to 220 W/m2 oC for velocity 60 m/s.\",\"PeriodicalId\":311103,\"journal\":{\"name\":\"Journal of University of Babylon for Engineering Sciences\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of University of Babylon for Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29196/JUBES.V26I7.1492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of University of Babylon for Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29196/JUBES.V26I7.1492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对微通道气流中的流体流动和换热进行了实验和数值研究。研究包括改变微通道的冷却速度和加热器功率。微通道的尺寸为:长0.1m,宽0.001m,高0.0005 m。实验和数值结果与之前的论文进行了比较,速度高达20 m/s,加热器功率高达5 W,比较是可以接受的。在本文中,数值推广的结果,速度高达60米/秒。数值解采用有限体积(SIMPLE算法)求解Navier Stokes方程(连续性、动量和能量)。结果表明,当速度为60m /s时,换热系数增加到220 W/m2 oC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and Numerical Study to Enhance of Heat Transfer Coefficient in Air Flow Using Microchannel
Experimental and numerical study of fluid flow and heat transfer in microchannel airflow is investigated. The study covers changing the cooling of micro-channel for the velocities and heater powers. The dimensions of the microchannel were, length = 0.1m, width = 0.001m, height = 0.0005 m. The experimental and numerical results were compared with the previous paper for velocities up to 20 m/s and heater powers up to 5 W and the comparison was acceptable. In this paper, the results were extended numerically for velocities up to 60 m/s. The numerical solution used finite volume (SIMPLE algorithm) to solve Navier Stokes equations (continuity, momentum and energy). The results show that the heat transfer coefficient increases up to 220 W/m2 oC for velocity 60 m/s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信