{"title":"用于小型移动设备的无处不在的键盘:利用多路径衰落实现细粒度击键定位","authors":"Junjue Wang, Kaichen Zhao, Xinyu Zhang, Chunyi Peng","doi":"10.1145/2594368.2594384","DOIUrl":null,"url":null,"abstract":"A well-known bottleneck of contemporary mobile devices is the inefficient and error-prone touchscreen keyboard. In this paper, we propose UbiK, an alternative portable text-entry method that allows user to make keystrokes on conventional surfaces, e.g., wood desktop. UbiK enables text-input experience similar to that on a physical keyboard, but it only requires a keyboard outline printed on the surface or a piece of paper atop. The core idea is to leverage the microphone on a mobile device to accurately localize the keystrokes. To achieve fine-grained, centimeter scale granularity, UbiK extracts and optimizes the location-dependent multipath fading features from the audio signals, and takes advantage of the dual-microphone interface to improve signal diversity. We implement UbiK as an Android application. Our experiments demonstrate that UbiK is able to achieve above 95% of localization accuracy. Field trial involving first-time users shows that UbiK can significantly improve text-entry speed over current on-screen keyboards.","PeriodicalId":131209,"journal":{"name":"Proceedings of the 12th annual international conference on Mobile systems, applications, and services","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"145","resultStr":"{\"title\":\"Ubiquitous keyboard for small mobile devices: harnessing multipath fading for fine-grained keystroke localization\",\"authors\":\"Junjue Wang, Kaichen Zhao, Xinyu Zhang, Chunyi Peng\",\"doi\":\"10.1145/2594368.2594384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A well-known bottleneck of contemporary mobile devices is the inefficient and error-prone touchscreen keyboard. In this paper, we propose UbiK, an alternative portable text-entry method that allows user to make keystrokes on conventional surfaces, e.g., wood desktop. UbiK enables text-input experience similar to that on a physical keyboard, but it only requires a keyboard outline printed on the surface or a piece of paper atop. The core idea is to leverage the microphone on a mobile device to accurately localize the keystrokes. To achieve fine-grained, centimeter scale granularity, UbiK extracts and optimizes the location-dependent multipath fading features from the audio signals, and takes advantage of the dual-microphone interface to improve signal diversity. We implement UbiK as an Android application. Our experiments demonstrate that UbiK is able to achieve above 95% of localization accuracy. Field trial involving first-time users shows that UbiK can significantly improve text-entry speed over current on-screen keyboards.\",\"PeriodicalId\":131209,\"journal\":{\"name\":\"Proceedings of the 12th annual international conference on Mobile systems, applications, and services\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"145\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th annual international conference on Mobile systems, applications, and services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2594368.2594384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th annual international conference on Mobile systems, applications, and services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2594368.2594384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ubiquitous keyboard for small mobile devices: harnessing multipath fading for fine-grained keystroke localization
A well-known bottleneck of contemporary mobile devices is the inefficient and error-prone touchscreen keyboard. In this paper, we propose UbiK, an alternative portable text-entry method that allows user to make keystrokes on conventional surfaces, e.g., wood desktop. UbiK enables text-input experience similar to that on a physical keyboard, but it only requires a keyboard outline printed on the surface or a piece of paper atop. The core idea is to leverage the microphone on a mobile device to accurately localize the keystrokes. To achieve fine-grained, centimeter scale granularity, UbiK extracts and optimizes the location-dependent multipath fading features from the audio signals, and takes advantage of the dual-microphone interface to improve signal diversity. We implement UbiK as an Android application. Our experiments demonstrate that UbiK is able to achieve above 95% of localization accuracy. Field trial involving first-time users shows that UbiK can significantly improve text-entry speed over current on-screen keyboards.