基于跳接自编码器的工业压力机无监督异常检测及根本原因分析

Chenwei Sun, Martin Trat, Jane Bender, J. Ovtcharova, George Jeppesen, Jan Bär
{"title":"基于跳接自编码器的工业压力机无监督异常检测及根本原因分析","authors":"Chenwei Sun, Martin Trat, Jane Bender, J. Ovtcharova, George Jeppesen, Jan Bär","doi":"10.1109/ICMLA55696.2022.00113","DOIUrl":null,"url":null,"abstract":"We propose an unsupervised-learning-based method for anomaly detection and root cause analysis for an industrial press machine. A skip-connected autoencoder with 55% performance improvement measured by reconstruction root mean square error to vanilla variant in average is used to train the collected multivariant time series data in different schemes. We then conduct a stacked evaluation method for both machine- level anomalies with the root cause localization and anomaly on specific cylinder tracks. Both real-world and synthetic anomalies embedded in real data are used for evaluation. The result shows that the multi-models training scheme and the relatively short window length can gain better performance, i.e., fewer anomaly false alarms and misses.","PeriodicalId":128160,"journal":{"name":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Anomaly Detection and Root Cause Analysis for an Industrial Press Machine based on Skip-Connected Autoencoder\",\"authors\":\"Chenwei Sun, Martin Trat, Jane Bender, J. Ovtcharova, George Jeppesen, Jan Bär\",\"doi\":\"10.1109/ICMLA55696.2022.00113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an unsupervised-learning-based method for anomaly detection and root cause analysis for an industrial press machine. A skip-connected autoencoder with 55% performance improvement measured by reconstruction root mean square error to vanilla variant in average is used to train the collected multivariant time series data in different schemes. We then conduct a stacked evaluation method for both machine- level anomalies with the root cause localization and anomaly on specific cylinder tracks. Both real-world and synthetic anomalies embedded in real data are used for evaluation. The result shows that the multi-models training scheme and the relatively short window length can gain better performance, i.e., fewer anomaly false alarms and misses.\",\"PeriodicalId\":128160,\"journal\":{\"name\":\"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA55696.2022.00113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA55696.2022.00113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于无监督学习的工业压力机异常检测和根本原因分析方法。采用不同方案对采集到的多变量时间序列数据进行训练,采用均方根误差重构的方法测量其平均性能提高55%的跳跃式自编码器。然后,我们对机器级异常和特定汽缸轨迹上的异常进行了堆叠评估方法。真实数据中的真实和合成异常都被用于评估。结果表明,多模型训练方案和相对较短的窗口长度可以获得更好的性能,即更少的异常误报和漏报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Anomaly Detection and Root Cause Analysis for an Industrial Press Machine based on Skip-Connected Autoencoder
We propose an unsupervised-learning-based method for anomaly detection and root cause analysis for an industrial press machine. A skip-connected autoencoder with 55% performance improvement measured by reconstruction root mean square error to vanilla variant in average is used to train the collected multivariant time series data in different schemes. We then conduct a stacked evaluation method for both machine- level anomalies with the root cause localization and anomaly on specific cylinder tracks. Both real-world and synthetic anomalies embedded in real data are used for evaluation. The result shows that the multi-models training scheme and the relatively short window length can gain better performance, i.e., fewer anomaly false alarms and misses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信