一种将历史应用于方程系统的理论

Rakesh M. Verma
{"title":"一种将历史应用于方程系统的理论","authors":"Rakesh M. Verma","doi":"10.1145/210118.210130","DOIUrl":null,"url":null,"abstract":"A general theory of using a congruence closure based simplifier (CCNS) proposed by P. Chew (1980) for computing normal forms is developed, and several applications are presented. An independent set of postulates is given, and it is proved that CCNS can be used for any system that satisfies them. It is then shown that CCNS can be used for consistent convergent systems and for various kinds of priority rewrite systems. A simple translation scheme for converting priority systems into effectively nonoverlapping convergent systems is presented.<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A theory of using history for equational systems with applications\",\"authors\":\"Rakesh M. Verma\",\"doi\":\"10.1145/210118.210130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A general theory of using a congruence closure based simplifier (CCNS) proposed by P. Chew (1980) for computing normal forms is developed, and several applications are presented. An independent set of postulates is given, and it is proved that CCNS can be used for any system that satisfies them. It is then shown that CCNS can be used for consistent convergent systems and for various kinds of priority rewrite systems. A simple translation scheme for converting priority systems into effectively nonoverlapping convergent systems is presented.<<ETX>>\",\"PeriodicalId\":320781,\"journal\":{\"name\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/210118.210130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/210118.210130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文发展了P. Chew(1980)提出的使用基于同余闭包的简化器(CCNS)计算范式的一般理论,并给出了几个应用。给出了一组独立的公设,并证明了CCNS可以用于满足这些公设的任何系统。结果表明,CCNS可用于一致收敛系统和各种优先级重写系统。提出了一种将优先级系统转换为有效的非重叠收敛系统的简单转换方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A theory of using history for equational systems with applications
A general theory of using a congruence closure based simplifier (CCNS) proposed by P. Chew (1980) for computing normal forms is developed, and several applications are presented. An independent set of postulates is given, and it is proved that CCNS can be used for any system that satisfies them. It is then shown that CCNS can be used for consistent convergent systems and for various kinds of priority rewrite systems. A simple translation scheme for converting priority systems into effectively nonoverlapping convergent systems is presented.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信