P. Huang, Cheng-I Chen, P. Lin, Ping Chen, Lipin Hsu
{"title":"利用小波变换对PET和MRI脑图像进行结构信息调整和光谱信息拼接","authors":"P. Huang, Cheng-I Chen, P. Lin, Ping Chen, Lipin Hsu","doi":"10.1109/ISBB.2014.6820901","DOIUrl":null,"url":null,"abstract":"In this paper, we present a PET and MR brain image fusion method based on wavelet transform for low- and high-activity brain image regions, respectively. Our method can generate very good fusion result by adjusting the anatomical structural information in the gray matter (GM) area, and then patching the spectral information in the white matter (WM) area after the wavelet decomposition and gray-level fusion. We used normal axial, normal coronal, and Alzheimer's disease brain images as the three datasets for testing and comparison. Experimental results showed that the performance of our fusion method is better than that of IHS+RIM fusion method in terms of spectral discrepancy (SD) and average gradient (AG). In fact, our method is superior to IHS+RIM method both visually and quantitatively.","PeriodicalId":265886,"journal":{"name":"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"PET and MRI brain image fusion using wavelet transform with structural information adjustment and spectral information patching\",\"authors\":\"P. Huang, Cheng-I Chen, P. Lin, Ping Chen, Lipin Hsu\",\"doi\":\"10.1109/ISBB.2014.6820901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a PET and MR brain image fusion method based on wavelet transform for low- and high-activity brain image regions, respectively. Our method can generate very good fusion result by adjusting the anatomical structural information in the gray matter (GM) area, and then patching the spectral information in the white matter (WM) area after the wavelet decomposition and gray-level fusion. We used normal axial, normal coronal, and Alzheimer's disease brain images as the three datasets for testing and comparison. Experimental results showed that the performance of our fusion method is better than that of IHS+RIM fusion method in terms of spectral discrepancy (SD) and average gradient (AG). In fact, our method is superior to IHS+RIM method both visually and quantitatively.\",\"PeriodicalId\":265886,\"journal\":{\"name\":\"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBB.2014.6820901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBB.2014.6820901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PET and MRI brain image fusion using wavelet transform with structural information adjustment and spectral information patching
In this paper, we present a PET and MR brain image fusion method based on wavelet transform for low- and high-activity brain image regions, respectively. Our method can generate very good fusion result by adjusting the anatomical structural information in the gray matter (GM) area, and then patching the spectral information in the white matter (WM) area after the wavelet decomposition and gray-level fusion. We used normal axial, normal coronal, and Alzheimer's disease brain images as the three datasets for testing and comparison. Experimental results showed that the performance of our fusion method is better than that of IHS+RIM fusion method in terms of spectral discrepancy (SD) and average gradient (AG). In fact, our method is superior to IHS+RIM method both visually and quantitatively.