基于智能体间测距的协同群体定位与映射

Young-Hee Lee, Chen Zhu, G. Giorgi, C. Günther
{"title":"基于智能体间测距的协同群体定位与映射","authors":"Young-Hee Lee, Chen Zhu, G. Giorgi, C. Günther","doi":"10.1109/PLANS46316.2020.9110227","DOIUrl":null,"url":null,"abstract":"Compared to a single robot, a swarm system can conduct a given task in a shorter time, and it is more robust to system failures of each agent. To successfully execute cooperative missions with multiple agents, accurate relative positioning is important. If global positioning (e.g. with a GNSS-based positioning) is available, we can easily compute relative positions. In environments where a global positioning system is unreliable or unavailable, visual odometry can be applied for estimating each agent's egomotion, by exploiting onboard cameras. Using these self-localization results, relative positions between agents can be estimated, once the relative geometry between agents is initialized. However, since visual odometry is a dead-reckoning process, the estimation errors accumulate inherently without bounds. We propose a cooperative localization method using visual odometry and inter-agent range measurements. Using the proposed method, we can reduce the drifts in position estimates with very modest requirements on the communication channel between agents.","PeriodicalId":273568,"journal":{"name":"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cooperative swarm localization and mapping with inter-agent ranging\",\"authors\":\"Young-Hee Lee, Chen Zhu, G. Giorgi, C. Günther\",\"doi\":\"10.1109/PLANS46316.2020.9110227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared to a single robot, a swarm system can conduct a given task in a shorter time, and it is more robust to system failures of each agent. To successfully execute cooperative missions with multiple agents, accurate relative positioning is important. If global positioning (e.g. with a GNSS-based positioning) is available, we can easily compute relative positions. In environments where a global positioning system is unreliable or unavailable, visual odometry can be applied for estimating each agent's egomotion, by exploiting onboard cameras. Using these self-localization results, relative positions between agents can be estimated, once the relative geometry between agents is initialized. However, since visual odometry is a dead-reckoning process, the estimation errors accumulate inherently without bounds. We propose a cooperative localization method using visual odometry and inter-agent range measurements. Using the proposed method, we can reduce the drifts in position estimates with very modest requirements on the communication channel between agents.\",\"PeriodicalId\":273568,\"journal\":{\"name\":\"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS46316.2020.9110227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS46316.2020.9110227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

与单个机器人相比,群体系统可以在更短的时间内完成给定的任务,并且对每个agent的系统故障具有更强的鲁棒性。为了成功执行多智能体合作任务,精确的相对定位至关重要。如果全球定位(例如基于gnss的定位)可用,我们可以很容易地计算相对位置。在全球定位系统不可靠或不可用的环境中,视觉里程计可以通过利用机载摄像机来估计每个代理的自我运动。利用这些自定位结果,一旦初始化了代理之间的相对几何形状,就可以估计代理之间的相对位置。然而,由于视觉里程计是一个航位推算过程,估计误差固有地累积无边界。我们提出了一种基于视觉里程计和智能体间距离测量的协同定位方法。利用该方法,我们可以在对智能体之间的通信通道要求非常低的情况下减少位置估计的漂移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cooperative swarm localization and mapping with inter-agent ranging
Compared to a single robot, a swarm system can conduct a given task in a shorter time, and it is more robust to system failures of each agent. To successfully execute cooperative missions with multiple agents, accurate relative positioning is important. If global positioning (e.g. with a GNSS-based positioning) is available, we can easily compute relative positions. In environments where a global positioning system is unreliable or unavailable, visual odometry can be applied for estimating each agent's egomotion, by exploiting onboard cameras. Using these self-localization results, relative positions between agents can be estimated, once the relative geometry between agents is initialized. However, since visual odometry is a dead-reckoning process, the estimation errors accumulate inherently without bounds. We propose a cooperative localization method using visual odometry and inter-agent range measurements. Using the proposed method, we can reduce the drifts in position estimates with very modest requirements on the communication channel between agents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信