{"title":"haynes244合金与沃斯帕洛合金的低周疲劳性能比较","authors":"M. Fahrmann","doi":"10.1115/gt2021-59619","DOIUrl":null,"url":null,"abstract":"\n HAYNES® 244® alloy was chiefly developed to address the need for high-strength, low coefficient of thermal expansion (CTE) alloys for seal rings and cases in advanced gas turbine engines. In addition to these attributes, adequate resistance to low-cycle fatigue (LCF) due to cyclic thermal and mechanical loading during service is critical for such applications. The isothermal LCF performance of commercially produced 0.5” (12.5 mm) thick, fully heat treated plate products of 244 alloy was evaluated by means of axial strain-controlled (R = −1) LCF tests covering total strain ranges up to 1.25 % (without dwells), at temperatures ranging from 800–1400°F (427–760°C). In addition, the comparative LCF performance of Waspaloy, a well-established alloy for turbine cases, was evaluated under selected, nominally identical test conditions. S-N curves were constructed and fitted by the Coffin-Manson equation, allowing the delineation of regimes controlled by the elastic and plastic response of the material. Fracture surfaces were examined in the scanning electron microscope to identify fatigue crack initiation sites and crack propagation modes. Differences between the alloys are discussed in terms of tensile strength and cyclic hardening/softening behavior. Implications for fatigue performance of these alloys under cyclic thermal loading conditions are discussed as well.","PeriodicalId":286637,"journal":{"name":"Volume 7: Industrial and Cogeneration; Manufacturing Materials and Metallurgy","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Low-Cycle Fatigue Behavior of HAYNES 244 Alloy and Waspaloy\",\"authors\":\"M. Fahrmann\",\"doi\":\"10.1115/gt2021-59619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n HAYNES® 244® alloy was chiefly developed to address the need for high-strength, low coefficient of thermal expansion (CTE) alloys for seal rings and cases in advanced gas turbine engines. In addition to these attributes, adequate resistance to low-cycle fatigue (LCF) due to cyclic thermal and mechanical loading during service is critical for such applications. The isothermal LCF performance of commercially produced 0.5” (12.5 mm) thick, fully heat treated plate products of 244 alloy was evaluated by means of axial strain-controlled (R = −1) LCF tests covering total strain ranges up to 1.25 % (without dwells), at temperatures ranging from 800–1400°F (427–760°C). In addition, the comparative LCF performance of Waspaloy, a well-established alloy for turbine cases, was evaluated under selected, nominally identical test conditions. S-N curves were constructed and fitted by the Coffin-Manson equation, allowing the delineation of regimes controlled by the elastic and plastic response of the material. Fracture surfaces were examined in the scanning electron microscope to identify fatigue crack initiation sites and crack propagation modes. Differences between the alloys are discussed in terms of tensile strength and cyclic hardening/softening behavior. Implications for fatigue performance of these alloys under cyclic thermal loading conditions are discussed as well.\",\"PeriodicalId\":286637,\"journal\":{\"name\":\"Volume 7: Industrial and Cogeneration; Manufacturing Materials and Metallurgy\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7: Industrial and Cogeneration; Manufacturing Materials and Metallurgy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2021-59619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: Industrial and Cogeneration; Manufacturing Materials and Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-59619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Low-Cycle Fatigue Behavior of HAYNES 244 Alloy and Waspaloy
HAYNES® 244® alloy was chiefly developed to address the need for high-strength, low coefficient of thermal expansion (CTE) alloys for seal rings and cases in advanced gas turbine engines. In addition to these attributes, adequate resistance to low-cycle fatigue (LCF) due to cyclic thermal and mechanical loading during service is critical for such applications. The isothermal LCF performance of commercially produced 0.5” (12.5 mm) thick, fully heat treated plate products of 244 alloy was evaluated by means of axial strain-controlled (R = −1) LCF tests covering total strain ranges up to 1.25 % (without dwells), at temperatures ranging from 800–1400°F (427–760°C). In addition, the comparative LCF performance of Waspaloy, a well-established alloy for turbine cases, was evaluated under selected, nominally identical test conditions. S-N curves were constructed and fitted by the Coffin-Manson equation, allowing the delineation of regimes controlled by the elastic and plastic response of the material. Fracture surfaces were examined in the scanning electron microscope to identify fatigue crack initiation sites and crack propagation modes. Differences between the alloys are discussed in terms of tensile strength and cyclic hardening/softening behavior. Implications for fatigue performance of these alloys under cyclic thermal loading conditions are discussed as well.