图的非线性降维

Yanning Shen, Panagiotis A. Traganitis, G. Giannakis
{"title":"图的非线性降维","authors":"Yanning Shen, Panagiotis A. Traganitis, G. Giannakis","doi":"10.1109/CAMSAP.2017.8313127","DOIUrl":null,"url":null,"abstract":"In this era of data deluge, many signal processing and machine learning tasks are faced with high-dimensional datasets, including images, videos, as well as time series generated from social, commercial and brain network interactions. Their efficient processing calls for dimensionality reduction techniques capable of properly compressing the data while preserving task-related characteristics, going beyond pairwise data correlations. The present paper puts forth a nonlinear dimensionality reduction framework that accounts for data lying on known graphs. The novel framework turns out to encompass most of the existing dimensionality reduction methods as special cases, and it is capable of capturing and preserving possibly nonlinear correlations that are ignored by linear methods, as well as taking into account information from multiple graphs. An efficient algorithm admitting closed-form solution is developed and tested on synthetic datasets to corroborate its effectiveness.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Nonlinear dimensionality reduction on graphs\",\"authors\":\"Yanning Shen, Panagiotis A. Traganitis, G. Giannakis\",\"doi\":\"10.1109/CAMSAP.2017.8313127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this era of data deluge, many signal processing and machine learning tasks are faced with high-dimensional datasets, including images, videos, as well as time series generated from social, commercial and brain network interactions. Their efficient processing calls for dimensionality reduction techniques capable of properly compressing the data while preserving task-related characteristics, going beyond pairwise data correlations. The present paper puts forth a nonlinear dimensionality reduction framework that accounts for data lying on known graphs. The novel framework turns out to encompass most of the existing dimensionality reduction methods as special cases, and it is capable of capturing and preserving possibly nonlinear correlations that are ignored by linear methods, as well as taking into account information from multiple graphs. An efficient algorithm admitting closed-form solution is developed and tested on synthetic datasets to corroborate its effectiveness.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

在这个数据泛滥的时代,许多信号处理和机器学习任务都面临着高维数据集,包括图像、视频,以及由社交、商业和大脑网络交互产生的时间序列。它们的有效处理需要能够在保留任务相关特征的同时适当压缩数据的降维技术,而不仅仅是两两数据关联。本文提出了一个考虑已知图上数据的非线性降维框架。新框架包含了大多数现有的降维方法作为特殊情况,它能够捕获和保留被线性方法忽略的可能的非线性相关性,以及考虑来自多个图的信息。开发了一种有效的承认闭型解的算法,并在合成数据集上进行了测试,以验证其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear dimensionality reduction on graphs
In this era of data deluge, many signal processing and machine learning tasks are faced with high-dimensional datasets, including images, videos, as well as time series generated from social, commercial and brain network interactions. Their efficient processing calls for dimensionality reduction techniques capable of properly compressing the data while preserving task-related characteristics, going beyond pairwise data correlations. The present paper puts forth a nonlinear dimensionality reduction framework that accounts for data lying on known graphs. The novel framework turns out to encompass most of the existing dimensionality reduction methods as special cases, and it is capable of capturing and preserving possibly nonlinear correlations that are ignored by linear methods, as well as taking into account information from multiple graphs. An efficient algorithm admitting closed-form solution is developed and tested on synthetic datasets to corroborate its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信