{"title":"并行和分布式系统容错的形式化研究","authors":"C. Papadopoulos","doi":"10.1109/ICAPP.1995.472262","DOIUrl":null,"url":null,"abstract":"This paper analyzes the ability of several bounded degree networks that are commonly used for parallel computation to tolerate faults. Among other things it is shown that an N-node butterfly containing N/sup 1-/spl epsiv// worst-case faults (for any constant /spl epsiv/>0) can emulate a fault-free butterfly of the same size with only constant slowdown. Similar results are proven for the shuffle-exchange graph. Hence, these networks become the first connected bounded-degree networks known to be able to sustain more than a constant number of worst-case faults without suffering more than a constant-factor slowdown in performance.<<ETX>>","PeriodicalId":448130,"journal":{"name":"Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing","volume":"29 16","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A formal study on the fault tolerance of parallel and distributed systems\",\"authors\":\"C. Papadopoulos\",\"doi\":\"10.1109/ICAPP.1995.472262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes the ability of several bounded degree networks that are commonly used for parallel computation to tolerate faults. Among other things it is shown that an N-node butterfly containing N/sup 1-/spl epsiv// worst-case faults (for any constant /spl epsiv/>0) can emulate a fault-free butterfly of the same size with only constant slowdown. Similar results are proven for the shuffle-exchange graph. Hence, these networks become the first connected bounded-degree networks known to be able to sustain more than a constant number of worst-case faults without suffering more than a constant-factor slowdown in performance.<<ETX>>\",\"PeriodicalId\":448130,\"journal\":{\"name\":\"Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing\",\"volume\":\"29 16\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAPP.1995.472262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPP.1995.472262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A formal study on the fault tolerance of parallel and distributed systems
This paper analyzes the ability of several bounded degree networks that are commonly used for parallel computation to tolerate faults. Among other things it is shown that an N-node butterfly containing N/sup 1-/spl epsiv// worst-case faults (for any constant /spl epsiv/>0) can emulate a fault-free butterfly of the same size with only constant slowdown. Similar results are proven for the shuffle-exchange graph. Hence, these networks become the first connected bounded-degree networks known to be able to sustain more than a constant number of worst-case faults without suffering more than a constant-factor slowdown in performance.<>