{"title":"树上的MSO查询:用森林代数枚举更新下的答案","authors":"Matthias Niewerth","doi":"10.1145/3209108.3209144","DOIUrl":null,"url":null,"abstract":"We investigate efficient enumeration of answers to MSO-definable queries over trees which are subject to local updates. We exhibit an algorithm that uses an O(n) preprocessing phase and enumerates answers with O(log(n)) delay between them. When the tree is updated, the algorithm can avoid repeating expensive preprocessing and restart the enumeration phase within O(log(n)) time. This improves over previous results that require O(log2(n)) time after updates and have O(log2(n)) delay. Our algorithms and complexity results in the paper are presented in terms of node-selecting tree automata representing the MSO queries. To present our algorithm, we introduce a balancing scheme for parse trees of forest algebra formulas that is of its own interest to lift results from strings to trees.","PeriodicalId":389131,"journal":{"name":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","volume":"467 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"MSO Queries on Trees: Enumerating Answers under Updates Using Forest Algebras\",\"authors\":\"Matthias Niewerth\",\"doi\":\"10.1145/3209108.3209144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate efficient enumeration of answers to MSO-definable queries over trees which are subject to local updates. We exhibit an algorithm that uses an O(n) preprocessing phase and enumerates answers with O(log(n)) delay between them. When the tree is updated, the algorithm can avoid repeating expensive preprocessing and restart the enumeration phase within O(log(n)) time. This improves over previous results that require O(log2(n)) time after updates and have O(log2(n)) delay. Our algorithms and complexity results in the paper are presented in terms of node-selecting tree automata representing the MSO queries. To present our algorithm, we introduce a balancing scheme for parse trees of forest algebra formulas that is of its own interest to lift results from strings to trees.\",\"PeriodicalId\":389131,\"journal\":{\"name\":\"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science\",\"volume\":\"467 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3209108.3209144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209108.3209144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MSO Queries on Trees: Enumerating Answers under Updates Using Forest Algebras
We investigate efficient enumeration of answers to MSO-definable queries over trees which are subject to local updates. We exhibit an algorithm that uses an O(n) preprocessing phase and enumerates answers with O(log(n)) delay between them. When the tree is updated, the algorithm can avoid repeating expensive preprocessing and restart the enumeration phase within O(log(n)) time. This improves over previous results that require O(log2(n)) time after updates and have O(log2(n)) delay. Our algorithms and complexity results in the paper are presented in terms of node-selecting tree automata representing the MSO queries. To present our algorithm, we introduce a balancing scheme for parse trees of forest algebra formulas that is of its own interest to lift results from strings to trees.