已实现区间波动预测:动态特征与预测变量

M. Caporin, Gabriel G. Velo
{"title":"已实现区间波动预测:动态特征与预测变量","authors":"M. Caporin, Gabriel G. Velo","doi":"10.2139/ssrn.2322637","DOIUrl":null,"url":null,"abstract":"In this paper, we estimate, model and forecast realized range volatility, a realized measure and estimator of the quadratic variation of financial prices. This quantity was introduced early in the literature and it is based on the high–low range observed at high frequency during the day. We consider the impact of the microstructure noise in high frequency data and correct our estimations, following a known procedure. Then, we model the realized range accounting for the well-known stylized effects present in financial data and we investigate the role that macroeconomic and financial variables play when forecasting daily stocks volatility. We consider an HAR model with asymmetric effects with respect to the volatility and the return, and GARCH and GJR specifications for the variance equation. Moreover, we consider a non-Gaussian distribution for the innovations. Finally, we extend the model including macroeconomic and financial variables that capture the present and the future state of the economy. We find that these variables are significantly correlated with the first common component of the volatility series and they have a highly in-sample explanatory power. The analysis of the forecast performance in 16 NYSE stocks suggests that the introduction of asymmetric effects with respect to the returns and the volatility in the HAR model result in a significant improvement in the point forecasting accuracy as well and the variables related with the U.S. stock market performance and proxies for the credit risk.","PeriodicalId":418701,"journal":{"name":"ERN: Time-Series Models (Single) (Topic)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Realized Range Volatility Forecasting: Dynamic Features and Predictive Variables\",\"authors\":\"M. Caporin, Gabriel G. Velo\",\"doi\":\"10.2139/ssrn.2322637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we estimate, model and forecast realized range volatility, a realized measure and estimator of the quadratic variation of financial prices. This quantity was introduced early in the literature and it is based on the high–low range observed at high frequency during the day. We consider the impact of the microstructure noise in high frequency data and correct our estimations, following a known procedure. Then, we model the realized range accounting for the well-known stylized effects present in financial data and we investigate the role that macroeconomic and financial variables play when forecasting daily stocks volatility. We consider an HAR model with asymmetric effects with respect to the volatility and the return, and GARCH and GJR specifications for the variance equation. Moreover, we consider a non-Gaussian distribution for the innovations. Finally, we extend the model including macroeconomic and financial variables that capture the present and the future state of the economy. We find that these variables are significantly correlated with the first common component of the volatility series and they have a highly in-sample explanatory power. The analysis of the forecast performance in 16 NYSE stocks suggests that the introduction of asymmetric effects with respect to the returns and the volatility in the HAR model result in a significant improvement in the point forecasting accuracy as well and the variables related with the U.S. stock market performance and proxies for the credit risk.\",\"PeriodicalId\":418701,\"journal\":{\"name\":\"ERN: Time-Series Models (Single) (Topic)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Time-Series Models (Single) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2322637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Time-Series Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2322637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文对金融价格二次变化的实现测度和估计,即实现幅度波动率进行估计、建模和预测。这个量是在文献早期介绍的,它是基于白天在高频率下观察到的高低范围。我们考虑了高频数据中微观结构噪声的影响,并按照已知的程序纠正了我们的估计。然后,我们根据金融数据中存在的众所周知的风格化效应对实现范围进行建模,并研究宏观经济和金融变量在预测股票每日波动时所起的作用。我们考虑一个HAR模型,在波动性和收益方面具有不对称效应,方差方程采用GARCH和GJR规范。此外,我们考虑了创新的非高斯分布。最后,我们扩展了模型,包括捕捉当前和未来经济状态的宏观经济和金融变量。我们发现这些变量与波动率序列的第一个共同成分显著相关,并且它们具有很高的样本内解释力。对纽约证券交易所16只股票的预测绩效分析表明,在HAR模型中引入关于收益和波动性的不对称效应导致点预测精度以及与美国股市表现和信用风险代理相关的变量显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realized Range Volatility Forecasting: Dynamic Features and Predictive Variables
In this paper, we estimate, model and forecast realized range volatility, a realized measure and estimator of the quadratic variation of financial prices. This quantity was introduced early in the literature and it is based on the high–low range observed at high frequency during the day. We consider the impact of the microstructure noise in high frequency data and correct our estimations, following a known procedure. Then, we model the realized range accounting for the well-known stylized effects present in financial data and we investigate the role that macroeconomic and financial variables play when forecasting daily stocks volatility. We consider an HAR model with asymmetric effects with respect to the volatility and the return, and GARCH and GJR specifications for the variance equation. Moreover, we consider a non-Gaussian distribution for the innovations. Finally, we extend the model including macroeconomic and financial variables that capture the present and the future state of the economy. We find that these variables are significantly correlated with the first common component of the volatility series and they have a highly in-sample explanatory power. The analysis of the forecast performance in 16 NYSE stocks suggests that the introduction of asymmetric effects with respect to the returns and the volatility in the HAR model result in a significant improvement in the point forecasting accuracy as well and the variables related with the U.S. stock market performance and proxies for the credit risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信