Zvika Guz, Harry Li, A. Shayesteh, V. Balakrishnan
{"title":"nvme -over- fabric存储分解性能表征","authors":"Zvika Guz, Harry Li, A. Shayesteh, V. Balakrishnan","doi":"10.1145/3239563","DOIUrl":null,"url":null,"abstract":"Storage disaggregation separates compute and storage to different nodes to allow for independent resource scaling and, thus, better hardware resource utilization. While disaggregation of hard-drives storage is a common practice, NVMe-SSD (i.e., PCIe-based SSD) disaggregation is considered more challenging. This is because SSDs are significantly faster than hard drives, so the latency overheads (due to both network and CPU processing) as well as the extra compute cycles needed for the offloading stack become much more pronounced. In this work, we characterize the overheads of NVMe-SSD disaggregation. We show that NVMe-over-Fabrics (NVMe-oF)—a recently released remote storage protocol specification—reduces the overheads of remote access to a bare minimum, thus greatly increasing the cost-efficiency of Flash disaggregation. Specifically, while recent work showed that SSD storage disaggregation via iSCSI degrades application-level throughput by 20%, we report on negligible performance degradation with NVMe-oF—both when using stress-tests as well as with a more-realistic KV-store workload.","PeriodicalId":273014,"journal":{"name":"ACM Transactions on Storage (TOS)","volume":"533 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Performance Characterization of NVMe-over-Fabrics Storage Disaggregation\",\"authors\":\"Zvika Guz, Harry Li, A. Shayesteh, V. Balakrishnan\",\"doi\":\"10.1145/3239563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Storage disaggregation separates compute and storage to different nodes to allow for independent resource scaling and, thus, better hardware resource utilization. While disaggregation of hard-drives storage is a common practice, NVMe-SSD (i.e., PCIe-based SSD) disaggregation is considered more challenging. This is because SSDs are significantly faster than hard drives, so the latency overheads (due to both network and CPU processing) as well as the extra compute cycles needed for the offloading stack become much more pronounced. In this work, we characterize the overheads of NVMe-SSD disaggregation. We show that NVMe-over-Fabrics (NVMe-oF)—a recently released remote storage protocol specification—reduces the overheads of remote access to a bare minimum, thus greatly increasing the cost-efficiency of Flash disaggregation. Specifically, while recent work showed that SSD storage disaggregation via iSCSI degrades application-level throughput by 20%, we report on negligible performance degradation with NVMe-oF—both when using stress-tests as well as with a more-realistic KV-store workload.\",\"PeriodicalId\":273014,\"journal\":{\"name\":\"ACM Transactions on Storage (TOS)\",\"volume\":\"533 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Storage (TOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3239563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage (TOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3239563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Characterization of NVMe-over-Fabrics Storage Disaggregation
Storage disaggregation separates compute and storage to different nodes to allow for independent resource scaling and, thus, better hardware resource utilization. While disaggregation of hard-drives storage is a common practice, NVMe-SSD (i.e., PCIe-based SSD) disaggregation is considered more challenging. This is because SSDs are significantly faster than hard drives, so the latency overheads (due to both network and CPU processing) as well as the extra compute cycles needed for the offloading stack become much more pronounced. In this work, we characterize the overheads of NVMe-SSD disaggregation. We show that NVMe-over-Fabrics (NVMe-oF)—a recently released remote storage protocol specification—reduces the overheads of remote access to a bare minimum, thus greatly increasing the cost-efficiency of Flash disaggregation. Specifically, while recent work showed that SSD storage disaggregation via iSCSI degrades application-level throughput by 20%, we report on negligible performance degradation with NVMe-oF—both when using stress-tests as well as with a more-realistic KV-store workload.