稀疏相互作用神经元集合中因果影响的动态估计

Alireza Sheikhattar, B. Babadi
{"title":"稀疏相互作用神经元集合中因果影响的动态估计","authors":"Alireza Sheikhattar, B. Babadi","doi":"10.1109/CISS.2016.7460562","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a neuronal ensemble under spontaneous activity where each neuron modulates the activity of the others through its spiking history. Assuming that the cross-history dependence parameters of the ensemble are sparse and time-varying, we perform adaptive system identification using sparse point process filters. We then provide a novel filtering and smoothing algorithm for estimating the Granger causality with high temporal resolution and with recursively computed statistical confidence intervals. We provide simulation studies which reveal significant performance gains obtained by our proposed technique in describing the causal influences in neuronal ensemble activity.","PeriodicalId":346776,"journal":{"name":"2016 Annual Conference on Information Science and Systems (CISS)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dynamic estimation of causal influences in sparsely-interacting neuronal ensembles\",\"authors\":\"Alireza Sheikhattar, B. Babadi\",\"doi\":\"10.1109/CISS.2016.7460562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a neuronal ensemble under spontaneous activity where each neuron modulates the activity of the others through its spiking history. Assuming that the cross-history dependence parameters of the ensemble are sparse and time-varying, we perform adaptive system identification using sparse point process filters. We then provide a novel filtering and smoothing algorithm for estimating the Granger causality with high temporal resolution and with recursively computed statistical confidence intervals. We provide simulation studies which reveal significant performance gains obtained by our proposed technique in describing the causal influences in neuronal ensemble activity.\",\"PeriodicalId\":346776,\"journal\":{\"name\":\"2016 Annual Conference on Information Science and Systems (CISS)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Annual Conference on Information Science and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2016.7460562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Annual Conference on Information Science and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2016.7460562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们考虑一个自发活动下的神经元集合,其中每个神经元通过其峰值历史来调节其他神经元的活动。假设集成的跨历史依赖参数是稀疏且时变的,我们使用稀疏点处理滤波器进行自适应系统辨识。然后,我们提供了一种新的滤波和平滑算法,用于估计具有高时间分辨率和递归计算统计置信区间的格兰杰因果关系。我们提供了模拟研究,揭示了我们提出的技术在描述神经元集合活动的因果影响方面获得的显着性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic estimation of causal influences in sparsely-interacting neuronal ensembles
In this paper, we consider a neuronal ensemble under spontaneous activity where each neuron modulates the activity of the others through its spiking history. Assuming that the cross-history dependence parameters of the ensemble are sparse and time-varying, we perform adaptive system identification using sparse point process filters. We then provide a novel filtering and smoothing algorithm for estimating the Granger causality with high temporal resolution and with recursively computed statistical confidence intervals. We provide simulation studies which reveal significant performance gains obtained by our proposed technique in describing the causal influences in neuronal ensemble activity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信