基于小波和神经网络的波斯纸币识别

F. P. Ahangaryan, T. Mohammadpour, A. Kianisarkaleh
{"title":"基于小波和神经网络的波斯纸币识别","authors":"F. P. Ahangaryan, T. Mohammadpour, A. Kianisarkaleh","doi":"10.1109/ICCSEE.2012.294","DOIUrl":null,"url":null,"abstract":"In this paper a new Persian banknote recognition system using wavelet transform and neural network has been proposed. The required images for the selected banknotes are obtained using a scanner. The color images are first converted to gray scale images, and then the discrete wavelet transform (DWT) is applied on the selected images and features are extracted. Finally, a multi layered Perceptron (MLP) Neural Network (NN) is presented to classify eight classes of interest, which are 50, 100, 200, 500, 1000, 2000, 5000 and 10000 to man notes. The system was implemented and tested using a data set of 320 samples of Persian banknotes, 40 images for each sign (from both sides). The experiments showed excellent classification results. The system was able to recognize more than 99% of all data, correctly.","PeriodicalId":132465,"journal":{"name":"2012 International Conference on Computer Science and Electronics Engineering","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Persian Banknote Recognition Using Wavelet and Neural Network\",\"authors\":\"F. P. Ahangaryan, T. Mohammadpour, A. Kianisarkaleh\",\"doi\":\"10.1109/ICCSEE.2012.294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a new Persian banknote recognition system using wavelet transform and neural network has been proposed. The required images for the selected banknotes are obtained using a scanner. The color images are first converted to gray scale images, and then the discrete wavelet transform (DWT) is applied on the selected images and features are extracted. Finally, a multi layered Perceptron (MLP) Neural Network (NN) is presented to classify eight classes of interest, which are 50, 100, 200, 500, 1000, 2000, 5000 and 10000 to man notes. The system was implemented and tested using a data set of 320 samples of Persian banknotes, 40 images for each sign (from both sides). The experiments showed excellent classification results. The system was able to recognize more than 99% of all data, correctly.\",\"PeriodicalId\":132465,\"journal\":{\"name\":\"2012 International Conference on Computer Science and Electronics Engineering\",\"volume\":\"208 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Computer Science and Electronics Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSEE.2012.294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Computer Science and Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSEE.2012.294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文提出了一种基于小波变换和神经网络的波斯纸币识别系统。所选钞票所需的图像是通过扫描仪获得的。首先将彩色图像转换为灰度图像,然后对所选图像进行离散小波变换(DWT)并提取特征。最后,提出了一种多层感知器(MLP)神经网络(NN),对50、100、200、500、1000、2000、5000和10000个感兴趣的类别进行分类。该系统的实施和测试使用了320张波斯纸币样本的数据集,每个标志40张图像(来自两面)。实验结果表明,分类效果良好。该系统能够正确识别99%以上的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Persian Banknote Recognition Using Wavelet and Neural Network
In this paper a new Persian banknote recognition system using wavelet transform and neural network has been proposed. The required images for the selected banknotes are obtained using a scanner. The color images are first converted to gray scale images, and then the discrete wavelet transform (DWT) is applied on the selected images and features are extracted. Finally, a multi layered Perceptron (MLP) Neural Network (NN) is presented to classify eight classes of interest, which are 50, 100, 200, 500, 1000, 2000, 5000 and 10000 to man notes. The system was implemented and tested using a data set of 320 samples of Persian banknotes, 40 images for each sign (from both sides). The experiments showed excellent classification results. The system was able to recognize more than 99% of all data, correctly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信