针对僵尸网络行为检测的网络流量数据分析

Duc C. Le, A. N. Zincir-Heywood, M. Heywood
{"title":"针对僵尸网络行为检测的网络流量数据分析","authors":"Duc C. Le, A. N. Zincir-Heywood, M. Heywood","doi":"10.1109/SSCI.2016.7850078","DOIUrl":null,"url":null,"abstract":"Botnets represent one of the most destructive cybersecurity threats. Given the evolution of the structures and protocols botnets use, many machine learning approaches have been proposed for botnet analysis and detection. In the literature, intrusion and anomaly detection systems based on unsupervised learning techniques showed promising performances. In this paper, we investigate the capability of employing the Self-Organizing Map (SOM), an unsupervised learning technique as a data analytics system. In doing so, our aim is to understand how far such an approach could be pushed to analyze unknown traffic to detect botnets. To this end, we employed three different unsupervised training schemes using publicly available botnet data sets. Our results show that SOMs possess high potential as a data analytics tool on unknown traffic. They can identify the botnet and normal flows with high confidence approximately 99% of the time on the data sets employed in this work.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Data analytics on network traffic flows for botnet behaviour detection\",\"authors\":\"Duc C. Le, A. N. Zincir-Heywood, M. Heywood\",\"doi\":\"10.1109/SSCI.2016.7850078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Botnets represent one of the most destructive cybersecurity threats. Given the evolution of the structures and protocols botnets use, many machine learning approaches have been proposed for botnet analysis and detection. In the literature, intrusion and anomaly detection systems based on unsupervised learning techniques showed promising performances. In this paper, we investigate the capability of employing the Self-Organizing Map (SOM), an unsupervised learning technique as a data analytics system. In doing so, our aim is to understand how far such an approach could be pushed to analyze unknown traffic to detect botnets. To this end, we employed three different unsupervised training schemes using publicly available botnet data sets. Our results show that SOMs possess high potential as a data analytics tool on unknown traffic. They can identify the botnet and normal flows with high confidence approximately 99% of the time on the data sets employed in this work.\",\"PeriodicalId\":120288,\"journal\":{\"name\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI.2016.7850078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2016.7850078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

僵尸网络是最具破坏性的网络安全威胁之一。鉴于僵尸网络使用的结构和协议的演变,已经提出了许多用于僵尸网络分析和检测的机器学习方法。在文献中,基于无监督学习技术的入侵和异常检测系统显示出良好的性能。在本文中,我们研究了使用自组织映射(SOM),一种无监督学习技术作为数据分析系统的能力。在这样做的过程中,我们的目标是了解这种方法可以在多大程度上用于分析未知流量以检测僵尸网络。为此,我们采用了三种不同的无监督训练方案,使用公开可用的僵尸网络数据集。我们的研究结果表明,som作为未知流量的数据分析工具具有很高的潜力。在这项工作中使用的数据集上,他们可以在大约99%的时间内以高置信度识别僵尸网络和正常流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data analytics on network traffic flows for botnet behaviour detection
Botnets represent one of the most destructive cybersecurity threats. Given the evolution of the structures and protocols botnets use, many machine learning approaches have been proposed for botnet analysis and detection. In the literature, intrusion and anomaly detection systems based on unsupervised learning techniques showed promising performances. In this paper, we investigate the capability of employing the Self-Organizing Map (SOM), an unsupervised learning technique as a data analytics system. In doing so, our aim is to understand how far such an approach could be pushed to analyze unknown traffic to detect botnets. To this end, we employed three different unsupervised training schemes using publicly available botnet data sets. Our results show that SOMs possess high potential as a data analytics tool on unknown traffic. They can identify the botnet and normal flows with high confidence approximately 99% of the time on the data sets employed in this work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信