基于深度语言模型和迁移学习的抑郁和焦虑预测

T. Rutowski, Elizabeth Shriberg, A. Harati, Yang Lu, P. Chlebek, R. Oliveira
{"title":"基于深度语言模型和迁移学习的抑郁和焦虑预测","authors":"T. Rutowski, Elizabeth Shriberg, A. Harati, Yang Lu, P. Chlebek, R. Oliveira","doi":"10.1109/BESC51023.2020.9348290","DOIUrl":null,"url":null,"abstract":"Digital screening and monitoring applications can aid providers in the management of behavioral health conditions. We explore deep language models for detecting depression, anxiety, and their comorbidity using input from conversational speech. Speech data comprise 16k spoken interactions labeled for both depression and anxiety. We find that results for binary classification range from 0.86 to 0.79 AUC, depending on condition and comorbidity. Best performance occurs for comorbid cases. We show that this result is not attributable to data skew. Finally, we find evidence suggesting that underlying word sequence cues may be more salient for depression than for anxiety.","PeriodicalId":224502,"journal":{"name":"2020 7th International Conference on Behavioural and Social Computing (BESC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Depression and Anxiety Prediction Using Deep Language Models and Transfer Learning\",\"authors\":\"T. Rutowski, Elizabeth Shriberg, A. Harati, Yang Lu, P. Chlebek, R. Oliveira\",\"doi\":\"10.1109/BESC51023.2020.9348290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital screening and monitoring applications can aid providers in the management of behavioral health conditions. We explore deep language models for detecting depression, anxiety, and their comorbidity using input from conversational speech. Speech data comprise 16k spoken interactions labeled for both depression and anxiety. We find that results for binary classification range from 0.86 to 0.79 AUC, depending on condition and comorbidity. Best performance occurs for comorbid cases. We show that this result is not attributable to data skew. Finally, we find evidence suggesting that underlying word sequence cues may be more salient for depression than for anxiety.\",\"PeriodicalId\":224502,\"journal\":{\"name\":\"2020 7th International Conference on Behavioural and Social Computing (BESC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 7th International Conference on Behavioural and Social Computing (BESC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BESC51023.2020.9348290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Behavioural and Social Computing (BESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BESC51023.2020.9348290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

数字筛选和监测应用程序可以帮助提供者管理行为健康状况。我们探索深层语言模型来检测抑郁,焦虑,和他们的共病使用会话语音输入。语音数据包括16k个标记为抑郁和焦虑的语音交互。我们发现二元分类的结果在0.86到0.79 AUC之间,这取决于病情和合并症。最佳表现出现在合并症病例中。我们表明,这一结果不是归因于数据倾斜。最后,我们发现有证据表明,潜在的单词序列线索可能在抑郁中比在焦虑中更为突出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Depression and Anxiety Prediction Using Deep Language Models and Transfer Learning
Digital screening and monitoring applications can aid providers in the management of behavioral health conditions. We explore deep language models for detecting depression, anxiety, and their comorbidity using input from conversational speech. Speech data comprise 16k spoken interactions labeled for both depression and anxiety. We find that results for binary classification range from 0.86 to 0.79 AUC, depending on condition and comorbidity. Best performance occurs for comorbid cases. We show that this result is not attributable to data skew. Finally, we find evidence suggesting that underlying word sequence cues may be more salient for depression than for anxiety.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信