{"title":"基于中心性度量的真实网络图连通支配集","authors":"N. Meghanathan, Atiqur Rahman, Mahzabin Akhter","doi":"10.4018/978-1-5225-8188-8.CH001","DOIUrl":null,"url":null,"abstract":"The authors investigate the use of centrality metrics as node weights to determine connected dominating sets (CDS) for a suite of 60 real-world network graphs of diverse degree distribution. They employ centrality metrics that are neighborhood-based (degree centrality [DEG] and eigenvector centrality [EVC]), shortest path-based (betweenness centrality [BWC] and closeness centrality [CLC]) as well as the local clustering coefficient complement-based degree centrality metric (LCC'DC), which is a hybrid of the neighborhood and shortest path-based categories. The authors target for minimum CDS node size (number of nodes constituting the CDS). Though both the BWC and CLC are shortest path-based centrality metrics, they observe the BWC-based CDSs to be of the smallest node size for about 60% of the real-world networks and the CLC-based CDSs to be of the largest node size for more than 40% of the real-world networks. The authors observe the computationally light LCC'DC-based CDS node size to be the same as the computationally heavy BWC-based CDS node size for about 50% of the real-world networks.","PeriodicalId":149489,"journal":{"name":"Strategic Innovations and Interdisciplinary Perspectives in Telecommunications and Networking","volume":"415 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Centrality Metrics-Based Connected Dominating Sets for Real-World Network Graphs\",\"authors\":\"N. Meghanathan, Atiqur Rahman, Mahzabin Akhter\",\"doi\":\"10.4018/978-1-5225-8188-8.CH001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors investigate the use of centrality metrics as node weights to determine connected dominating sets (CDS) for a suite of 60 real-world network graphs of diverse degree distribution. They employ centrality metrics that are neighborhood-based (degree centrality [DEG] and eigenvector centrality [EVC]), shortest path-based (betweenness centrality [BWC] and closeness centrality [CLC]) as well as the local clustering coefficient complement-based degree centrality metric (LCC'DC), which is a hybrid of the neighborhood and shortest path-based categories. The authors target for minimum CDS node size (number of nodes constituting the CDS). Though both the BWC and CLC are shortest path-based centrality metrics, they observe the BWC-based CDSs to be of the smallest node size for about 60% of the real-world networks and the CLC-based CDSs to be of the largest node size for more than 40% of the real-world networks. The authors observe the computationally light LCC'DC-based CDS node size to be the same as the computationally heavy BWC-based CDS node size for about 50% of the real-world networks.\",\"PeriodicalId\":149489,\"journal\":{\"name\":\"Strategic Innovations and Interdisciplinary Perspectives in Telecommunications and Networking\",\"volume\":\"415 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strategic Innovations and Interdisciplinary Perspectives in Telecommunications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-5225-8188-8.CH001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strategic Innovations and Interdisciplinary Perspectives in Telecommunications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-8188-8.CH001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Centrality Metrics-Based Connected Dominating Sets for Real-World Network Graphs
The authors investigate the use of centrality metrics as node weights to determine connected dominating sets (CDS) for a suite of 60 real-world network graphs of diverse degree distribution. They employ centrality metrics that are neighborhood-based (degree centrality [DEG] and eigenvector centrality [EVC]), shortest path-based (betweenness centrality [BWC] and closeness centrality [CLC]) as well as the local clustering coefficient complement-based degree centrality metric (LCC'DC), which is a hybrid of the neighborhood and shortest path-based categories. The authors target for minimum CDS node size (number of nodes constituting the CDS). Though both the BWC and CLC are shortest path-based centrality metrics, they observe the BWC-based CDSs to be of the smallest node size for about 60% of the real-world networks and the CLC-based CDSs to be of the largest node size for more than 40% of the real-world networks. The authors observe the computationally light LCC'DC-based CDS node size to be the same as the computationally heavy BWC-based CDS node size for about 50% of the real-world networks.