28ghz频谱共享中5G NR链路效率评估

Abdallah A. Abu-Arabia, Iskandar, Rifqy Hakimi
{"title":"28ghz频谱共享中5G NR链路效率评估","authors":"Abdallah A. Abu-Arabia, Iskandar, Rifqy Hakimi","doi":"10.1109/ICWT50448.2020.9243635","DOIUrl":null,"url":null,"abstract":"Access to higher frequency bands, specifically in the millimeterwave (mm-W) is a promising way in fifth generation new radio (5G NR) wireless systems for meeting data rate requirements such as peak rate greater than 10 Gbps and cell edge rate of up to 1 Gbps. However, the emerging 5G NR systems will need to coexist with a number of incumbent systems in these bands. This paper investigates the feasibility of coexistence between a 5G NR system and a fixed satellite service (FSS) earth station (ES) sharing mm-W band, 27.5-28.35 GHz (28GHz) frequency band. The co-channel sharing scenario considers the fifth generation access point (5G AP) system as a victim receiver while the FSS ES as an incumbent interferer transmitter. The performance assessment is studied by conducting the interference model in the uplink direction, then evaluating the link quality at the 5G AP system in term of spectral efficiency using the block error rate as a sharing constraint. We found that the FSS ES-to-5G AP separation distance is a dominant factor contributing to the 5G NR link efficiency. It is also found that, the transmission power of FSS ES and its elevation angle toward the 5G AP could be a potential issue which suppresses performance of the 5G AP system. Based on the obtained results, the 5G AP system can be developed in sharing scenario with minimizing the protection distance if appropriate design considerations are taken into account.","PeriodicalId":304605,"journal":{"name":"2020 6th International Conference on Wireless and Telematics (ICWT)","volume":"253 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of 5G NR Link Efficiency in 28 GHz Spectrum Sharing\",\"authors\":\"Abdallah A. Abu-Arabia, Iskandar, Rifqy Hakimi\",\"doi\":\"10.1109/ICWT50448.2020.9243635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Access to higher frequency bands, specifically in the millimeterwave (mm-W) is a promising way in fifth generation new radio (5G NR) wireless systems for meeting data rate requirements such as peak rate greater than 10 Gbps and cell edge rate of up to 1 Gbps. However, the emerging 5G NR systems will need to coexist with a number of incumbent systems in these bands. This paper investigates the feasibility of coexistence between a 5G NR system and a fixed satellite service (FSS) earth station (ES) sharing mm-W band, 27.5-28.35 GHz (28GHz) frequency band. The co-channel sharing scenario considers the fifth generation access point (5G AP) system as a victim receiver while the FSS ES as an incumbent interferer transmitter. The performance assessment is studied by conducting the interference model in the uplink direction, then evaluating the link quality at the 5G AP system in term of spectral efficiency using the block error rate as a sharing constraint. We found that the FSS ES-to-5G AP separation distance is a dominant factor contributing to the 5G NR link efficiency. It is also found that, the transmission power of FSS ES and its elevation angle toward the 5G AP could be a potential issue which suppresses performance of the 5G AP system. Based on the obtained results, the 5G AP system can be developed in sharing scenario with minimizing the protection distance if appropriate design considerations are taken into account.\",\"PeriodicalId\":304605,\"journal\":{\"name\":\"2020 6th International Conference on Wireless and Telematics (ICWT)\",\"volume\":\"253 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 6th International Conference on Wireless and Telematics (ICWT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWT50448.2020.9243635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th International Conference on Wireless and Telematics (ICWT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWT50448.2020.9243635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在第五代新无线电(5G NR)无线系统中,访问更高的频段,特别是毫米波(mm-W)是一种有希望的方式,可以满足数据速率要求,例如峰值速率大于10 Gbps,小区边缘速率高达1 Gbps。然而,新兴的5G NR系统将需要与这些频段中的许多现有系统共存。本文研究了5G NR系统与共享mm-W频段27.5-28.35 GHz (28GHz)频段的固定卫星业务(FSS)地面站(ES)共存的可行性。共信道共享方案将第五代接入点(5G AP)系统视为受害接收器,而FSS ES作为现任干扰发射器。通过在上行方向进行干扰模型,然后以分组错误率作为共享约束,从频谱效率的角度评估5G AP系统的链路质量,从而研究性能评估。我们发现,FSS es到5G AP的分离距离是影响5G NR链路效率的主要因素。研究还发现,FSS ES的发射功率及其对5G AP的仰角可能是抑制5G AP系统性能的潜在问题。根据所获得的结果,如果考虑适当的设计考虑,可以在共享场景下开发5G AP系统,以最小化保护距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of 5G NR Link Efficiency in 28 GHz Spectrum Sharing
Access to higher frequency bands, specifically in the millimeterwave (mm-W) is a promising way in fifth generation new radio (5G NR) wireless systems for meeting data rate requirements such as peak rate greater than 10 Gbps and cell edge rate of up to 1 Gbps. However, the emerging 5G NR systems will need to coexist with a number of incumbent systems in these bands. This paper investigates the feasibility of coexistence between a 5G NR system and a fixed satellite service (FSS) earth station (ES) sharing mm-W band, 27.5-28.35 GHz (28GHz) frequency band. The co-channel sharing scenario considers the fifth generation access point (5G AP) system as a victim receiver while the FSS ES as an incumbent interferer transmitter. The performance assessment is studied by conducting the interference model in the uplink direction, then evaluating the link quality at the 5G AP system in term of spectral efficiency using the block error rate as a sharing constraint. We found that the FSS ES-to-5G AP separation distance is a dominant factor contributing to the 5G NR link efficiency. It is also found that, the transmission power of FSS ES and its elevation angle toward the 5G AP could be a potential issue which suppresses performance of the 5G AP system. Based on the obtained results, the 5G AP system can be developed in sharing scenario with minimizing the protection distance if appropriate design considerations are taken into account.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信